Welcome to LookChem.com Sign In|Join Free

CAS

  • or

456-39-3

Post Buying Request

456-39-3 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

456-39-3 Usage

General Description

3-Chlorobenzenediazonium tetrafluorborate is a chemical compound that consists of a diazonium cation with a 3-chlorobenzene substituent and a tetrafluoroborate anion. It is commonly used as a diazonium salt in organic synthesis reactions, particularly in the formation of azo compounds. 3-chlorobenzenediazonium tetrafluorborate is also used as a precursor for the synthesis of various aromatic and heteroaromatic compounds, as well as in the development of new materials and pharmaceuticals. Due to its reactivity, handling and storage of 3-chlorobenzenediazonium tetrafluorborate should be done with caution, as it can be explosive and potentially toxic if mishandled.

Check Digit Verification of cas no

The CAS Registry Mumber 456-39-3 includes 6 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 3 digits, 4,5 and 6 respectively; the second part has 2 digits, 3 and 9 respectively.
Calculate Digit Verification of CAS Registry Number 456-39:
(5*4)+(4*5)+(3*6)+(2*3)+(1*9)=73
73 % 10 = 3
So 456-39-3 is a valid CAS Registry Number.
InChI:InChI=1/C6H4ClN2.BF4/c7-5-2-1-3-6(4-5)9-8;2-1(3,4)5/h1-4H;/q+1;-1

456-39-3SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 20, 2017

Revision Date: Aug 20, 2017

1.Identification

1.1 GHS Product identifier

Product name 3-chlorobenzenediazonium,tetrafluoroborate

1.2 Other means of identification

Product number -
Other names EINECS 207-262-7

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:456-39-3 SDS

456-39-3Relevant articles and documents

Aqueous and Visible-Light-Promoted C-H (Hetero)arylation of Uracil Derivatives with Diazoniums

Liu, An-Di,Wang, Zhao-Li,Liu, Li,Cheng, Liang

, p. 16434 - 16447 (2021/11/16)

Direct C5 (hetero)arylation of uracil and uridine substrates with (hetero)aryl diazonium salts under photoredox catalysis with blue light was reported. The coupling proceeds efficiently with diazonium salts and heterocycles in good functional group tolerance at room temperature in aqueous solution without transition-metal components. A plausible radical mechanism has been proposed.

Transition-Metal- A nd Light-Free Directed Amination of Remote Unactivated C(sp3)-H Bonds of Alcohols

Kurandina, Daria,Yadagiri, Dongari,Rivas, Monica,Kavun, Aleksei,Chuentragool, Padon,Hayama, Keiichi,Gevorgyan, Vladimir

supporting information, p. 8104 - 8109 (2019/06/13)

Due to the great value of amino alcohols, new methods for their synthesis are in high demand. Abundant aliphatic alcohols represent the ideal feedstock for the method development toward this important motif. To date, transition-metal-catalyzed approaches for the directed remote amination of alcohols have been well established. Yet, they have certain disadvantages such as the use of expensive catalysts and limited scope. Very recently, transition-metal-free visible-light-induced radical approaches have emerged as new powerful tools for directed remote amination of alcohols. Relying on 1,5-HAT reactivity, these methods are limited to β-or δ- A mination only. Herein, we report a novel transitionmetal- A nd visible-light-free room-temperature radical approach for remote β-, γ-, and δ-C(sp3)-N bond formation in aliphatic alcohols using mild basic conditions and readily available diazonium salt reagents.

RhIII-Catalyzed Synthesis of Highly Substituted 2-Pyridones using Fluorinated Diazomalonate

Das, Debapratim,Sahoo, Gopal,Biswas, Aniruddha,Samanta, Rajarshi

supporting information, p. 360 - 364 (2020/01/25)

A RhIII-catalyzed strategy was developed for the rapid construction of highly substituted 2-pyridone scaffolds using α,β-unsaturated oximes and fluorinated diazomalonate. The reaction proceeds through direct, site-selective alkylation based on migratory insertion and subsequent cyclocondensation. A wide substrate scope with different functional groups was explored. The requirement of fluorinated diazomalonate was explored for this transformation. The developed methodology was further extended with the synthesis of the bioactive compound.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 456-39-3