Welcome to LookChem.com Sign In|Join Free

CAS

  • or

497-09-6

Post Buying Request

497-09-6 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

497-09-6 Usage

Chemical Properties

Colorless to light yellow liqui

Uses

(S)-2,3-Dihydroxypropanal(90% in H2O) is the enantiomer of D-Glyceraldehyde (G598200). Glyceraldehyde is the simplest of all aldoses and is commonly found as an intermediate in carbohydrate metabolism.

Definition

ChEBI: The L-enantiomer of glyceraldehyde.

Biochem/physiol Actions

L-(-)-Glyceraldehyde is an important intermediate in carbohydrate metabolism.

Check Digit Verification of cas no

The CAS Registry Mumber 497-09-6 includes 6 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 3 digits, 4,9 and 7 respectively; the second part has 2 digits, 0 and 9 respectively.
Calculate Digit Verification of CAS Registry Number 497-09:
(5*4)+(4*9)+(3*7)+(2*0)+(1*9)=86
86 % 10 = 6
So 497-09-6 is a valid CAS Registry Number.
InChI:InChI=1/C3H6O3/c4-1-3(6)2-5/h1,3,5-6H,2H2/t3-/m1/s1

497-09-6SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 18, 2017

Revision Date: Aug 18, 2017

1.Identification

1.1 GHS Product identifier

Product name L-glyceraldehyde

1.2 Other means of identification

Product number -
Other names Propanal, 2,3-dihydroxy-, (S)-

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:497-09-6 SDS

497-09-6Relevant articles and documents

Enantioselective Reductive Oligomerization of Carbon Dioxide into l-Erythrulose via a Chemoenzymatic Catalysis

Bontemps, Sébastien,Clapés, Pere,Desmons, Sarah,Dumon, Claire,Fauré, Régis,Grayson-Steel, Katie,Hurtado, John,Nu?ez-Dallos, Nelson,Vendier, Laure

supporting information, p. 16274 - 16283 (2021/10/12)

A cell-free enantioselective transformation of the carbon atom of CO2has never been reported. In the urgent context of transforming CO2into products of high value, the enantiocontrolled synthesis of chiral compounds from CO2would be highly desirable. Using an original hybrid chemoenzymatic catalytic process, we report herein the reductive oligomerization of CO2into C3(dihydroxyacetone, DHA) and C4(l-erythrulose) carbohydrates, with perfect enantioselectivity of the latter chiral product. This was achieved with the key intermediacy of formaldehyde. CO2is first reduced selectively by 4e-by an iron-catalyzed hydroboration reaction, leading to the isolation and complete characterization of a new bis(boryl)acetal compound derived from dimesitylborane. In an aqueous buffer solution at 30 °C, this compound readily releases formaldehyde, which is then involved in selective enzymatic transformations, giving rise either (i) to DHA using a formolase (FLS) catalysis or (ii) to l-erythrulose with a cascade reaction combining FLS and d-fructose-6-phosphate aldolase (FSA) A129S variant. Finally, the nature of the synthesized products is noteworthy, since carbohydrates are of high interest for the chemical and pharmaceutical industries. The present results prove that the cell-freede novosynthesis of carbohydrates from CO2as a sustainable carbon source is a possible alternative pathway in addition to the intensely studied biomass extraction andde novosyntheses from fossil resources.

Convergent in situ Generation of Both Transketolase Substrates via Transaminase and Aldolase Reactions for Sequential One-Pot, Three-Step Cascade Synthesis of Ketoses

Lorillière, Marion,Guérard-Hélaine, Christine,Gefflaut, Thierry,Fessner, Wolf-Dieter,Clapés, Pere,Charmantray, Franck,Hecquet, Laurence

, p. 812 - 817 (2019/12/27)

We describe an efficient three-enzyme, sequential one-pot cascade reaction where both transketolase substrates are generated in situ in a convergent fashion. The nucleophilic donor substrate hydroxypyruvate was obtained from l-serine and pyruvate by a transaminase-catalyzed reaction. In parallel, three different (2S)-α-hydroxylated aldehydes, l-glyceraldehyde, d-threose, and l-erythrose, were generated as electrophilic acceptors from simple achiral compounds glycolaldehyde and formaldehyde by d-fructose-6-phosphate aldolase catalysis. The compatibility of the three enzymes was studied in terms of temperature, enzyme ratio and substrate concentration. The efficiency of the process relied on the irreversibility of the transketolase reaction, driving a shift of the reversible transamination reaction and securing the complete conversion of all substrates. Three valuable (3S,4S)-ketoses, l-ribulose, d-tagatose, and l-psicose were obtained in good yields with high diastereoselectivity.

Prebiotic synthesis of 2-deoxy-d-ribose from interstellar building blocks promoted by amino esters or amino nitriles

Steer, Andrew M.,Bia, Nicolas,Smith, David K.,Clarke, Paul A.

supporting information, p. 10362 - 10365 (2017/09/25)

Understanding the prebiotic genesis of 2-deoxy-d-ribose, which forms the backbone of DNA, is of crucial importance to unravelling the origins of life, yet remains open to debate. Here we demonstrate that 20 mol% of proteinogenic amino esters promote the selective formation of 2-deoxy-d-ribose over 2-deoxy-d-threopentose in combined yields of ≥4%. We also demonstrate the first aldol reaction promoted by prebiotically-relevant proteinogenic amino nitriles (20 mol%) for the enantioselective synthesis of d-glyceraldehyde with 6% ee, and its subsequent conversion into 2-deoxy-d-ribose in yields of ≥ 5%. Finally, we explore the combination of these two steps in a one-pot process using 20 mol% of an amino ester or amino nitrile promoter. It is hence demonstrated that three interstellar starting materials, when mixed together with an appropriate promoter, can directly lead to the formation of a mixture of higher carbohydrates, including 2-deoxy-d-ribose.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 497-09-6