Welcome to LookChem.com Sign In|Join Free

CAS

  • or

5076-72-2

Post Buying Request

5076-72-2 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

5076-72-2 Usage

Check Digit Verification of cas no

The CAS Registry Mumber 5076-72-2 includes 7 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 4 digits, 5,0,7 and 6 respectively; the second part has 2 digits, 7 and 2 respectively.
Calculate Digit Verification of CAS Registry Number 5076-72:
(6*5)+(5*0)+(4*7)+(3*6)+(2*7)+(1*2)=92
92 % 10 = 2
So 5076-72-2 is a valid CAS Registry Number.
InChI:InChI=1/C9H12O2/c1-3-11-9-6-4-8(10-2)5-7-9/h4-7H,3H2,1-2H3

5076-72-2SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 12, 2017

Revision Date: Aug 12, 2017

1.Identification

1.1 GHS Product identifier

Product name 1-ethoxy-4-methoxybenzene

1.2 Other means of identification

Product number -
Other names EINECS 225-786-4

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only. Food additives -> Flavoring Agents
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:5076-72-2 SDS

5076-72-2Relevant articles and documents

Direct Hydrodecarboxylation of Aliphatic Carboxylic Acids: Metal- and Light-Free

Burns, David J.,Lee, Ai-Lan,McLean, Euan B.,Mooney, David T.

supporting information, p. 686 - 691 (2022/01/28)

A mild and inexpensive method for direct hydrodecarboxylation of aliphatic carboxylic acids has been developed. The reaction does not require metals, light, or catalysts, rendering the protocol operationally simple, easy to scale, and more sustainable. Crucially, no additional H atom source is required in most cases, while a broad substrate scope and functional group tolerance are observed.

Oxalic Diamides and tert-Butoxide: Two Types of Ligands Enabling Practical Access to Alkyl Aryl Ethers via Cu-Catalyzed Coupling Reaction

Chen, Zhixiang,Jiang, Yongwen,Zhang, Li,Guo, Yinlong,Ma, Dawei

supporting information, p. 3541 - 3549 (2019/02/26)

A robust and practical protocol for preparing alkyl aryl ethers has been developed, which relies on using two types of ligands to promote Cu-catalyzed alkoxylation of (hetero)aryl halides. The reaction scope is very general for a variety of coupling partners, particularly for challenging secondary alcohols and (hetero)aryl chlorides. In case of coupling with aryl chlorides and bromides, two oxalic diamides serve as the powerful ligands. The tert-butoxide is first demonstrated as a ligand for Cu-catalyzed coupling reaction, leading to alkoxylation of aryl iodides complete at room temperature. Additionally, a number of carbohydrate derivatives are applicable for this coupling reaction, affording the corresponding carbohydrate-aryl ethers in 29-98% yields.

Highly selective conversion of guaiacol to: Tert -butylphenols in supercritical ethanol over a H2WO4 catalyst

Mai, Fuhang,Cui, Kai,Wen, Zhe,Wu, Kai,Yan, Fei,Chen, Mengmeng,Chen, Hong,Li, Yongdan

, p. 2764 - 2771 (2019/02/01)

The conversion of guaiacol is examined at 300 °C in supercritical ethanol over a H2WO4 catalyst. Guaiacol is consumed completely, meanwhile, 16.7% aromatic ethers and 80.0% alkylphenols are obtained. Interestingly, tert-butylphenols are produced mainly with a high selectivity of 71.8%, and the overall selectivity of 2,6-di-tert-butylphenol and 2,6-di-tert-butyl-4-ethylphenol is as high as 63.7%. The experimental results indicate that catechol and 2-ethoxyphenol are the intermediates. Meanwhile, the WO3 sites play an important role in the conversion of guaiacol and the Br?nsted acid sites on H2WO4 enhance the conversion and favour a high selectivity of the tert-butylphenols. The recycling tests show that the carbon deposition on the catalyst surface, the dehydration and partial reduction of the catalyst itself are responsible for the decay of the H2WO4 catalyst. Finally, the possible reaction pathways proposed involve the transetherification process and the alkylation process during guaiacol conversion.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 5076-72-2