53392-03-3Relevant articles and documents
Rhodium(III)-Catalyzed Direct C-H Arylation of Various Acyclic Enamides with Arylsilanes
Li, Xiaolan,Sun, Kai,Shen, Wenjuan,Zhang, Yong,Lu, Ming-Zhu,Luo, Xuzhong,Luo, Haiqing
supporting information, p. 31 - 36 (2021/01/09)
The stereoselective β-C(sp2)-H arylation of various acyclic enamides with arylsilanes via Rh(III)-catalyzed cross-coupling reaction was illustrated. The methodology was characterized by extraordinary efficacy and stereoselectivity, a wide scope of substrates, good functional group tolerance, and the adoption of environmentally friendly arylsilanes. The utility of this present method was evidenced by the gram-scale synthesis and further elaboration of the product. In addition, Rh(III)-catalyzed C-H activation is considered to be the critical step in the reaction mechanism.
Improved synthesis of aryltrialkoxysilanes via treatment of aryl Grignard or lithium reagents with tetraalkyl orthosilicates
Manoso, Amy S.,Ahn, Chuljin,Soheili, Arash,Handy, Christopher J.,Correia, Reuben,Seganish, W. Michael,DeShong, Philip
, p. 8305 - 8314 (2007/10/03)
General reaction conditions for the synthesis of aryl(trialkoxy)silanes from aryl Grignard and lithium reagents and tetraalkyl orthosilicates (Si(OR)4) have been developed. Ortho-, meta-, and para-substituted bromoarenes underwent efficient metalation and silylation at low temperature to provide aryl siloxanes. Mixed results were obtained with heteroaromatic substrates: 3-bromothiophene, 3-bromo-4-methoxypyridine, 5-bromoindole, and N-methyl-5-bromoindole underwent silylation in good yield, whereas a low yield of siloxane was obtained from 2-bromofuran, and 2-bromopyridine failed to give silylated product. The synthesis of siloxanes via organolithium and magnesium reagents was limited by the formation of di- and triarylated silanes (Ar 2Si(OR)2 and Ar3SiOR, respectively) and dehalogenated (Ar-H) byproducts. Silylation at low temperature gave predominantly monoaryl siloxanes, without requiring a large excess of the electrophile. Optimal reaction conditions for the synthesis of siloxanes from aryl Grignard reagents entailed addition of arylmagnesium reagents to 3 equiv of tetraethyl- or tetramethyl orthosilicate at -30 °C in THF. Aryllithium species were silylated using 1.5 equiv of tetraethyl- or tetramethyl orthosilicate at -78 °C in ether.
Improved synthesis of aryltriethoxysilanes via palladium(O)-catalyzed silylation of aryl iodides and bromides with triethoxysilane
Manoso,DeShong
, p. 7449 - 7455 (2007/10/03)
The scope of the palladium-catalyzed silylation of aryl halides with triethoxysilane has been expanded to include aryl bromides. A more general Pd(0) catalyst/ligand system has been developed that activates bromides and iodides: palladium(O) dibenzylideneacetone (Pd(dba)2) is activated with 2-(di-tert-butylphosphino)biphenyl (Buchwald's ligand) (1:2 mol ratio of Pd/phosphine). Electronrich para- and meta-substituted aryl halides (including unprotected aniline and phenol derivatives) undergo silylation to form the corresponding aryltriethoxysilane in fair to excellent yield; however, ortho-substituted aryl halides failed to be silylated.