Welcome to LookChem.com Sign In|Join Free

CAS

  • or

542-27-8

Post Buying Request

542-27-8 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

542-27-8 Usage

General Description

PYRIMIDIN-4-OL, also known as pyrimidin-4-ol, is a heterocyclic compound with the molecular formula C4H4N2O. It is a pyrimidine derivative and is classified as a hydroxy pyrimidine. PYRIMIDIN-4-OL is a colorless, water-soluble solid and is used in organic synthesis to create other pyrimidine derivatives. It is also used in the production of pharmaceuticals and agrochemicals. PYRIMIDIN-4-OL is a versatile chemical that has various industrial applications and is an important building block in the synthesis of other compounds.

Check Digit Verification of cas no

The CAS Registry Mumber 542-27-8 includes 6 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 3 digits, 5,4 and 2 respectively; the second part has 2 digits, 2 and 7 respectively.
Calculate Digit Verification of CAS Registry Number 542-27:
(5*5)+(4*4)+(3*2)+(2*2)+(1*7)=58
58 % 10 = 8
So 542-27-8 is a valid CAS Registry Number.

542-27-8SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 18, 2017

Revision Date: Aug 18, 2017

1.Identification

1.1 GHS Product identifier

Product name 4(3H)-Pyrimidinone

1.2 Other means of identification

Product number -
Other names -

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:542-27-8 SDS

542-27-8Relevant articles and documents

A possible prebiotic synthesis of purine, adenine, cytosine, and 4(3H)-pyrimidinone from formamide: Implications for the origin of life

Saladino, Raffaele,Crestini, Claudia,Costanzo, Giovanna,Negri, Rodolfo,Di Mauro, Ernesto

, p. 1249 - 1253 (2001)

The synthesis of prebiotic molecules is a major problem in chemical evolution as well as in any origin-of-life theory. We report here a plausible new prebiotic synthesis of naturally occurring purine and pyrimidine derivatives from formamide under catalytic conditions. In the presence of CaCO3 and different inorganic oxides, namely silica, alumine, kaolin, and zeolite (Y type), neat formamide undergoes the formation of purine, adenine, cytosine, and 4(3H)-pyrimidinone, from acceptable to good yields. The role of catalysts showed to be not limited to the improvement of the yield but it is also relevant in providing a high selectivity in the products distribution.

A Global Scale Scenario for Prebiotic Chemistry: Silica-Based Self-Assembled Mineral Structures and Formamide

Saladino, Raffaele,Botta, Giorgia,Bizzarri, Bruno Mattia,Di Mauro, Ernesto,Garcia Ruiz, Juan Manuel

, p. 2806 - 2811 (2016/06/01)

The pathway from simple abiotically made organic compounds to the molecular bricks of life, as we know it, is unknown. The most efficient geological abiotic route to organic compounds results from the aqueous dissolution of olivine, a reaction known as serpentinization (Sleep, N.H., et al. (2004) Proc. Natl. Acad. Sci. USA 101, 12818-12822). In addition to molecular hydrogen and a reducing environment, serpentinization reactions lead to high-pH alkaline brines that can become easily enriched in silica. Under these chemical conditions, the formation of self-assembled nanocrystalline mineral composites, namely silica/carbonate biomorphs and metal silicate hydrate (MSH) tubular membranes (silica gardens), is unavoidable (Kellermeier, M., et al. In Methods in Enzymology, Research Methods in Biomineralization Science (De Yoreo, J., Ed.) Vol. 532, pp 225-256, Academic Press, Burlington, MA). The osmotically driven membranous structures have remarkable catalytic properties that could be operating in the reducing organic-rich chemical pot in which they form. Among one-carbon compounds, formamide (NH2CHO) has been shown to trigger the formation of complex prebiotic molecules under mineral-driven catalytic conditions (Saladino, R., et al. (2001) Biorganic & Medicinal Chemistry, 9, 1249-1253), proton irradiation (Saladino, R., et al. (2015) Proc. Natl. Acad. Sci. USA, 112, 2746-2755), and laser-induced dielectric breakdown (Ferus, M., et al. (2015) Proc Natl Acad Sci USA, 112, 657-662). Here, we show that MSH membranes are catalysts for the condensation of NH2CHO, yielding prebiotically relevant compounds, including carboxylic acids, amino acids, and nucleobases. Membranes formed by the reaction of alkaline (pH 12) sodium silicate solutions with MgSO4 and Fe2(SO4)3·9H2O show the highest efficiency, while reactions with CuCl2·2H2O, ZnCl2, FeCl2·4H2O, and MnCl2·4H2O showed lower reactivities. The collections of compounds forming inside and outside the tubular membrane are clearly specific, demonstrating that the mineral self-assembled membranes at the same time create space compartmentalization and selective catalysis of the synthesis of relevant compounds. Rather than requiring odd local conditions, the prebiotic organic chemistry scenario for the origin of life appears to be common at a universal scale and, most probably, earlier than ever thought for our planet.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 542-27-8