Welcome to LookChem.com Sign In|Join Free

CAS

  • or

5457-70-5

Post Buying Request

5457-70-5 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

5457-70-5 Usage

Chemical Properties

Phenethyl octanoate has a mild, fruity, wine-like odor.

Occurrence

Reported found in beer, rum, cider, white wine, port wine and botrytised wine.

Taste threshold values

Taste characteristics at 10 to 20 ppm: sweet, fruity, creamy and slightly lactonic with floral nuances.

Check Digit Verification of cas no

The CAS Registry Mumber 5457-70-5 includes 7 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 4 digits, 5,4,5 and 7 respectively; the second part has 2 digits, 7 and 0 respectively.
Calculate Digit Verification of CAS Registry Number 5457-70:
(6*5)+(5*4)+(4*5)+(3*7)+(2*7)+(1*0)=105
105 % 10 = 5
So 5457-70-5 is a valid CAS Registry Number.
InChI:InChI=1/C16H24O2/c1-2-3-4-5-9-12-16(17)18-14-13-15-10-7-6-8-11-15/h6-8,10-11H,2-5,9,12-14H2,1H3

5457-70-5SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 11, 2017

Revision Date: Aug 11, 2017

1.Identification

1.1 GHS Product identifier

Product name 2-phenylethyl octanoate

1.2 Other means of identification

Product number -
Other names Phenethyl octanoate

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only. Food additives -> Flavoring Agents
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:5457-70-5 SDS

5457-70-5Downstream Products

5457-70-5Relevant articles and documents

Recyclable DMAP-Functionalized polymeric nanoreactors for highly efficient acylation of alcohols in aqueous systems

Qiu, Jiaqi,Meng, Fuliang,Wang, Maolin,Huang, Jinjin,Wang, Chengzhan,Li, Xiao,Yang, Guang,Hua, Zan,Chen, Tao

, (2021/03/30)

Fabrication of highly efficient and recyclable nanoreactors via macromolecular self-assembly represents a promising strategy for green organic transformation. In this study, small-molecule catalysts 4-(N,N-dimethylamino)pyridine (DMAP) functionalized nanoreactors were constructed by self-assembly of amphiphilic block copolymers with DMAP moieties in the hydrophobic block, leading to heterogeneous catalysts with excellent dispersity in water. The key preparation route included reversible addition-fragmentation chain transfer (RAFT) polymerization of 2-(N-methyl-N-(4-pyridyl)amino)ethyl methacrylate (MAPMA) and methyl methacrylate (MMA) using poly (oligomeric (ethylene glycol) methyl ether methacrylate) (POEGMA) as a hydrophilic macromoleculer RAFT reagent. The characterization by dynamic light scattering (DLS) and transmission electron microscopy (TEM) shows that the nanoreactors possess a core-shell nanostructure with the diameter of around 110 nm. The resulting polymeric nanoreactors showed excellent catalytic activity for acylation of alcohols in water. High conversion of a variety of alcohol (>99%) and excellent product selectivity were achieved. The high catalytic efficiency of the nanoreactors may be attributed to the enhancement of the interaction between the reactant and the catalyst in the confined hydrophobic space, which simulates how enzymes usually work. Moreover, the catalyst could be easily recovered by thermos-responsive separation and reused with high activity for more than 5 cycles. This study presents an efficient approach to achieve green catalytic reactions which are normally incompatible to aqueous conditions, potentially applicable to other catalytic systems such as metal-mediated organic transformations.

The phosphate-carboxylate mixed-anhydride method: A mild, efficient process for ester and amide bond construction

McNulty, James,Vemula, Ramesh,Krishnamoorthy, Venkatesan,Robertson, Al

experimental part, p. 5415 - 5421 (2012/09/08)

A highly efficient carboxylate-phosphate anhydride pathway is described for the direct, economical synthesis of esters and amides from carboxylic acids and alcohols or amines. The reaction proceeds with retention of configuration with both chiral secondary alcohols and α-amino acid derivatives allowing access to useful chiral auxiliaries, ligands, and organocatalysts. Ester and amide products can be isolated directly in high yield due to the water soluble nature of the side products.

Efficient liquid phase acylation of alcohols over basic ETS-10 molecular sieves

Waghmode, Suresh B.,Thakur, Vinay V.,Sudalai, Arumugam,Sivasanker, Subramanian

, p. 3145 - 3147 (2007/10/03)

Acylation of alcohols with acetic acid can be carried out efficiently in the liquid phase over microporous titanosilicate ETS-10-type catalysts. The reaction was studied over ETS-10 exchanged with, Li, Na, K, Rb, Cs, Ba and H ions. Activity for acylation of primary alcohols depends on the exchanged alkali ion and increases in the order LiNaKBa~H~Rb~Cs-ETS-10. These molecular sieves are also suitable for the acylation of secondary alcohols and esterification with long chain carboxylic acids.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 5457-70-5