57573-38-3Relevant articles and documents
A Substituent-Directed Strategy for the Selective Synthesis of L-Hexoses: An Expeditious Route to L-Idose
See, Nicholas W.,Wimmer, Norbert,Krenske, Elizabeth H.,Ferro, Vito
, p. 1575 - 1584 (2021)
L-Hexoses are rare but biologically significant components of various important biomolecules. However, most are prohibitively expensive (if commercially available) which limits their study and biotechnological exploitation. New, efficient methods to access L-hexoses and their derivatives are thus of great interest. In a previous study, we showcased a stereoselective Bu3SnH-mediated transformation of a 5-C-bromo-D-glucuronide to an L-iduronide. We have now drawn inspiration from this result to derive a new methodology – one that can be harnessed to access other L-hexoses. DFT calculations demonstrate that a combination of a β-F at the anomeric position and a methoxycarbonyl substituent at C-6 is key to optimising the selectivity for the L-hexose product. Our investigations have also culminated in the development of the shortest known synthetic route to a derivative of L-idose from a commercially available starting material (45 % yield over 3 steps). Collectively, these results address the profound lack of understanding of how to synthesise L-hexoses in a stereoselective fashion.
Synthesis of Glycosyl Fluorides by Photochemical Fluorination with Sulfur(VI) Hexafluoride
Bannykh, Anton,Khomutnyk, Yaroslav,Kim, Sungjin,Nagorny, Pavel
supporting information, p. 190 - 194 (2021/01/13)
This study describes a new convenient method for the photocatalytic generation of glycosyl fluorides using sulfur(VI) hexafluoride as an inexpensive and safe fluorinating agent and 4,4′-dimethoxybenzophenone as a readily available organic photocatalyst. This mild method was employed to generate 16 different glycosyl fluorides, including the substrates with acid and base labile functionalities, in yields of 43%-97%, and it was applied in continuous flow to accomplish fluorination on an 7.7 g scale and 93% yield.
Synthesis of the Thomsen-Friedenreich-antigen (TF-antigen) and binding of Galectin-3 to TF-antigen presenting neo-glycoproteins
Elling, Lothar,Hayes, Marc R.,Hoffmann, Marius,Pietruszka, J?rg
, (2020/05/25)
The Thomsen-Friedenreich-antigen, Gal(β1–3)GalNAc(α1-O-Ser/Thr (TF-antigen), is presented on the surface of most human cancer cell types. Its interaction with galectin 1 and galectin 3 leads to tumor cell aggregation and promotes cancer metastasis and T-cell apoptosis in epithelial tissue. To further explore multivalent binding between the TF-antigen and galectin-3, the TF-antigen was enzymatically synthesized in high yields with GalNAc(α1-EG3-azide as the acceptor substrate by use of the glycosynthase BgaC/Glu233Gly. Subsequently, it was coupled to alkynyl-functionalized bovine serum albumin via a copper(I)-catalyzed alkyne-azide cycloaddition. This procedure yielded neo-glycoproteins with tunable glycan multivalency for binding studies. Glycan densities between 2 and 53 glycan residues per protein molecule were obtained by regulated alkynyl-modification of the lysine residues of BSA. The number of coupled glycans was quantified by sodium dodecyl sulfate polyacrylamide gel electrophoresis and a trinitrobenzene sulfonic acid assay. The binding efficiency of the neo-glycoproteins with human galectin-3 and the effect of multivalency was investigated and assessed using an enzyme-linked lectin assay. Immobilized neo-glycoproteins of all modification densities showed binding of Gal-3 with increasing glycan density. However, multivalent glycan presentation did not result in a higher binding affinity. In contrast, inhibition of Gal-3 binding to asialofetuin was effective. The relative inhibitory potency was increased by a factor of 142 for neo-glycoproteins displaying 10 glycans/protein in contrast to highly decorated inhibitors with only 2-fold increase. In summary, the functionality of BSA-based neo-glycoproteins presenting the TF-antigen as multivalent inhibitors for Gal-3 was demonstrated.
Chemical glucosylation of pyridoxine
Bachmann, Thomas,Rychlik, Michael
, (2020/02/13)
The chemical synthesis of pyridoxine-5′-β-D-glucoside (5′-β-PNG) was investigated using various glucoside donors and promoters. Hereby, the combination of α4,3-O-isopropylidene pyridoxine, glucose vested with different leaving and protecting groups and the application of stoichiometric amounts of different promoters was examined with regards to the preparation of the twofold protected PNG. Best results were obtained with 2,3,4,6-tetra-O-acetyl-D-glucopyranosyl fluoride and boron trifluoride etherate (2.0 eq.) as promoter at 0 °C (59%). The deprotection was accomplished stepwise with potassium/sodium hydroxide in acetonitrile/water followed by acid hydrolysis with formic acid resulting in the chemical synthesis of 5′-β-PNG.
Open-Shell Fluorination of Alkyl Bromides: Unexpected Selectivity in a Silyl Radical-Mediated Chain Process
Lovett, Gabrielle H.,Chen, Shuming,Xue, Xiao-Song,Houk,MacMillan, David W. C.
, p. 20031 - 20036 (2019/12/27)
We disclose a novel radical strategy for the fluorination of alkyl bromides via the merger of silyl radical-mediated halogen-atom abstraction and benzophenone photosensitization. Selectivity for halogen-atom abstraction from alkyl bromides is observed in the presence of an electrophilic fluorinating reagent containing a weak N-F bond despite the predicted favorability for Si-F bond formation. To probe this surprising selectivity, preliminary mechanistic and computational studies were conducted, revealing that a radical chain mechanism is operative in which kinetic selectivity for Si-Br abstraction dominates due to a combination of polar effects and halogen-atom polarizability in the transition state. This transition-metal-free fluorination protocol tolerates a broad range of functional groups, including alcohols, ketones, and aldehydes, which demonstrates the complementary nature of this strategy to existing fluorination technologies. This system has been extended to the generation of gem-difluorinated motifs which are commonly found in medicinal agents and agrochemicals.
Chemical synthetic method for beta-arbutin
-
Paragraph 0006; 0010; 0014, (2019/01/08)
The invention provides a chemical synthetic method for beta-arbutin, which includes: 1) performing a reaction to pentaacetyl-beta-D-glucose with a 70% hydrofluoric acid pyridine solution at 10-30 DEGC to obtain tetraacetyl-alpha-fluoroglucose; 2) performing a reaction to the tetraacetyl-alpha-fluoroglucose with p-hydroxyacetophenone in a mixed solvent under catalysis of tetrabutylammonium bromidewith Ca(OH)2 being an accelerant at 20-30 DEG C to prepare p-acetylphenyl-2,3,4,6-tetra-O-acetyl-beta-D-glucopyranoside; 3) performing a reaction to the p-acetylphenyl-2,3,4,6-tetra-O-acetyl-beta-D-glucopyranoside with 40% peroxyacetic acid in an organic solvent at 5-20 DEG C to obtain p-acetoxylphenyl-2,3,4,6-tetra-O-acetyl-beta-D-glucopyranoside; 4) performing a reaction to the p-acetoxylphenyl-2,3,4,6-tetra-O-acetyl-beta-D-glucopyranoside at 15-25 DEG C in the presence of anhydrous methanol-sodium methoxide to obtain the beta-arbutin. The method is high in yield, low in cost, gentle in conditions and less in emission of waste liquid, waste gas and waste solids, and is suitable for industrial production.
Blue Light Photocatalytic Glycosylation without Electrophilic Additives
Wen, Peng,Crich, David
supporting information, p. 2402 - 2405 (2017/05/12)
Photocatalytic formation of glycosidic bonds employing stable and readily accessible O-glycosyl derivatives of 2,2,6,6-tetramethylpiperidin-1-ol is presented that employs an iridium-based photocatalyst and blue LEDs. The reaction proceeds at room temperature and in the absence of additives other than 4 ? molecular sieves. Stereoselectivities are modest but nevertheless dependent on the anomeric configuration of the donor, suggesting a substantial degree of concerted character.
FLUORINATING AGENT
-
Paragraph 0092; 0098, (2016/12/01)
An object of the present invention is to provide a novel substance that has a high reactivity as a fluorinating agent, is effectively used in various fluorination reactions, and is safely handled even in air. As the solution for achieving this object, the present invention provides a complex obtained by reacting bromine trifluoride with at least one metal halide selected from the group consisting of halogenated metals and halogenated hydrogen metals in a nonpolar solvent. This complex serves as a fluorinating agent that provides excellent fluorination performance and that is stable in air.
General and Stereocontrolled Approach to the Chemical Synthesis of Naturally Occurring Cyanogenic Glucosides
Moller, Birger L.,Olsen, Carl E.,Motawia, Mohammed S.
supporting information, p. 1198 - 1202 (2016/05/24)
An effective method for the chemical synthesis of cyanogenic glucosides has been developed as demonstrated by the synthesis of dhurrin, taxiphyllin, prunasin, sambunigrin, heterodendrin, and epiheterodendrin. O-Trimethylsilylated cyanohydrins were prepared and subjected directly to glucosylation using a fully acetylated glucopyranosyl fluoride donor with boron trifluoride-diethyl etherate as promoter to afford a chromatographically separable epimeric mixture of the corresponding acetylated cyanogenic glucosides. The isolated epimers were deprotected using a triflic acid/MeOH/ion-exchange resin system without any epimerization of the cyanohydrin function. The method is stereocontrolled and provides an efficient approach to chemical synthesis of other naturally occurring cyanogenic glucosides including those with a more complex aglycone structure.
Aqueous Glycosylation of Unprotected Sucrose Employing Glycosyl Fluorides in the Presence of Calcium Ion and Trimethylamine
Pelletier, Guillaume,Zwicker, Aaron,Allen, C. Liana,Schepartz, Alanna,Miller, Scott J.
supporting information, p. 3175 - 3182 (2016/03/19)
We report a synthetic glycosylation reaction between sucrosyl acceptors and glycosyl fluoride donors to yield the derived trisaccharides. This reaction proceeds at room temperature in an aqueous solvent mixture. Calcium salts and a tertiary amine base promote the reaction with high site-selectivity for either the 3′-position or 1′-position of the fructofuranoside unit. Because nonenzymatic aqueous oligosaccharide syntheses are underdeveloped, mechanistic studies were carried out in order to identify the origin of the selectivity, which we hypothesized was related to the structure of the hydroxyl group array in sucrose. The solution conformation of various monodeoxysucrose analogs revealed the co-operative nature of the hydroxyl groups in mediating both this aqueous glycosyl bond-forming reaction and the site-selectivity at the same time.