Welcome to LookChem.com Sign In|Join Free

CAS

  • or

589-18-4

Post Buying Request

589-18-4 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

589-18-4 Usage

Chemical Properties

white crystalline mass, needles or crystals

Uses

Different sources of media describe the Uses of 589-18-4 differently. You can refer to the following data:
1. Perfumery, flavoring dyes, laboratory reagent.
2. 4-Methylbenzyl alcohol is used in fragrances, flavoring and as a laboratory reagent. It is also used as a raw material for the preparation of polycarbonates and 4-methyl-benzaldehyde.

Production Methods

p-Tolyl alcohol is commercially prepared by reducing p-tolyl aldehyde. It is used mainly in fragrances, and the major route of exposure is likely to be dermal contact.

Definition

ChEBI: A methylbenzyl alcohol in which the methyl substituent is para to the hydroxymethyl group.

Synthesis Reference(s)

The Journal of Organic Chemistry, 52, p. 946, 1987 DOI: 10.1021/jo00381a047

General Description

Needles or off-white crystalline powder.

Air & Water Reactions

Slightly soluble in water.

Reactivity Profile

4-Methylbenzyl alcohol can react with acids, acid chlorides, acid anhydrides and oxidizing agents.

Health Hazard

ACUTE/CHRONIC HAZARDS: When heated to decomposition 4-Methylbenzyl alcohol emits acrid smoke and toxic fumes of carbon monoxide and carbon dioxide.

Fire Hazard

Flash point data for 4-Methylbenzyl alcohol are not available. 4-Methylbenzyl alcohol is probably combustible.

Flammability and Explosibility

Notclassified

Purification Methods

Crystallise the alcohol from pet ether (b 80-100o, 1g/mL), Et2O, pentane or H2O (m 61-62.1o). It can also be distilled in a vacuum. [Beilstein 6 H 498, 6 I 248, 6 II 469, 6 III 1779.]

Check Digit Verification of cas no

The CAS Registry Mumber 589-18-4 includes 6 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 3 digits, 5,8 and 9 respectively; the second part has 2 digits, 1 and 8 respectively.
Calculate Digit Verification of CAS Registry Number 589-18:
(5*5)+(4*8)+(3*9)+(2*1)+(1*8)=94
94 % 10 = 4
So 589-18-4 is a valid CAS Registry Number.
InChI:InChI=1/C8H10O/c1-7-2-4-8(6-9)5-3-7/h2-5,9H,6H2,1H3

589-18-4 Well-known Company Product Price

  • Brand
  • (Code)Product description
  • CAS number
  • Packaging
  • Price
  • Detail
  • Alfa Aesar

  • (A15315)  4-Methylbenzyl alcohol, 99%   

  • 589-18-4

  • 25g

  • 340.0CNY

  • Detail
  • Alfa Aesar

  • (A15315)  4-Methylbenzyl alcohol, 99%   

  • 589-18-4

  • 100g

  • 1018.0CNY

  • Detail
  • Alfa Aesar

  • (A15315)  4-Methylbenzyl alcohol, 99%   

  • 589-18-4

  • 500g

  • 4060.0CNY

  • Detail

589-18-4SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 12, 2017

Revision Date: Aug 12, 2017

1.Identification

1.1 GHS Product identifier

Product name 4-methylbenzyl alcohol

1.2 Other means of identification

Product number -
Other names p-methyl-benzyl alcohol

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only. Flavouring Agent: FLAVOURING_AGENT
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:589-18-4 SDS

589-18-4Relevant articles and documents

-

Davidson,Weiss

, p. 80 (1938)

-

An efficient method for the cleavage of tert-butyldiphenylsilyl ethers catalyzed by 1,3-dibromo-5,5-dimethylhydantoin

Han, Zong

, p. 51 - 62 (2022/02/14)

An efficient method for the deprotection of tert-butyldiphenylsilyl (TBDPS) ethers using 1,3-dibromo-5,5-dimethylhydantoin (DBH) as catalyst and dimethyl sulfoxide (DMSO) as solvent has been established. This method is useful for many kinds of compounds,

The Stereoselective Oxidation of para-Substituted Benzenes by a Cytochrome P450 Biocatalyst

Chao, Rebecca R.,Lau, Ian C.-K.,Coleman, Tom,Churchman, Luke R.,Child, Stella A.,Lee, Joel H. Z.,Bruning, John B.,De Voss, James J.,Bell, Stephen G.

supporting information, p. 14765 - 14777 (2021/09/14)

The serine 244 to aspartate (S244D) variant of the cytochrome P450 enzyme CYP199A4 was used to expand its substrate range beyond benzoic acids. Substrates, in which the carboxylate group of the benzoic acid moiety is replaced were oxidised with high activity by the S244D mutant (product formation rates >60 nmol.(nmol-CYP)?1.min?1) and with total turnover numbers of up to 20,000. Ethyl α-hydroxylation was more rapid than methyl oxidation, styrene epoxidation and S-oxidation. The S244D mutant catalysed the ethyl hydroxylation, epoxidation and sulfoxidation reactions with an excess of one stereoisomer (in some instances up to >98 %). The crystal structure of 4-methoxybenzoic acid-bound CYP199A4 S244D showed that the active site architecture and the substrate orientation were similar to that of the WT enzyme. Overall, this work demonstrates that CYP199A4 can catalyse the stereoselective hydroxylation, epoxidation or sulfoxidation of substituted benzene substrates under mild conditions resulting in more sustainable transformations using this heme monooxygenase enzyme.

Hydroboration Reaction and Mechanism of Carboxylic Acids using NaNH2(BH3)2, a Hydroboration Reagent with Reducing Capability between NaBH4and LiAlH4

Wang, Jin,Ju, Ming-Yue,Wang, Xinghua,Ma, Yan-Na,Wei, Donghui,Chen, Xuenian

, p. 5305 - 5316 (2021/04/12)

Hydroboration reactions of carboxylic acids using sodium aminodiboranate (NaNH2[BH3]2, NaADBH) to form primary alcohols were systematically investigated, and the reduction mechanism was elucidated experimentally and computationally. The transfer of hydride ions from B atoms to C atoms, the key step in the mechanism, was theoretically illustrated and supported by experimental results. The intermediates of NH2B2H5, PhCH= CHCOOBH2NH2BH3-, PhCH= CHCH2OBO, and the byproducts of BH4-, NH2BH2, and NH2BH3- were identified and characterized by 11B and 1H NMR. The reducing capacity of NaADBH was found between that of NaBH4 and LiAlH4. We have thus found that NaADBH is a promising reducing agent for hydroboration because of its stability and easy handling. These reactions exhibit excellent yields and good selectivity, therefore providing alternative synthetic approaches for the conversion of carboxylic acids to primary alcohols with a wide range of functional group tolerance.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 589-18-4