6053-81-2Relevant articles and documents
Zirconium-hydride-catalyzed site-selective hydroboration of amides for the synthesis of amines: Mechanism, scope, and application
Han, Bo,Jiao, Haijun,Wu, Lipeng,Zhang, Jiong
, p. 2059 - 2067 (2021/09/02)
Developing mild and efficient catalytic methods for the selective synthesis of amines is a longstanding research objective. In this respect, catalytic deoxygenative amide reduction has proven to be promising but challenging, as this approach necessitates selective C–O bond cleavage. Herein, we report the selective hydroboration of primary, secondary, and tertiary amides at room temperature catalyzed by an earth-abundant-metal catalyst, Zr-H, for accessing diverse amines. Various readily reducible functional groups, such as esters, alkynes, and alkenes, were well tolerated. Furthermore, the methodology was extended to the synthesis of bio- and drug-derived amines. Detailed mechanistic studies revealed a reaction pathway entailing aldehyde and amido complex formation via an unusual C–N bond cleavage-reformation process, followed by C–O bond cleavage.
A State-of-the-Art Heterogeneous Catalyst for Efficient and General Nitrile Hydrogenation
Formenti, Dario,Mocci, Rita,Atia, Hanan,Dastgir, Sarim,Anwar, Muhammad,Bachmann, Stephan,Scalone, Michelangelo,Junge, Kathrin,Beller, Matthias
supporting information, p. 15589 - 15595 (2020/10/02)
Cobalt-doped hybrid materials consisting of metal oxides and carbon derived from chitin were prepared, characterized and tested for industrially relevant nitrile hydrogenations. The optimal catalyst supported onto MgO showed, after pyrolysis at 700 °C, magnesium oxide nanocubes decorated with carbon-enveloped Co nanoparticles. This special structure allows for the selective hydrogenation of diverse and demanding nitriles to the corresponding primary amines under mild conditions (e.g. 70 °C, 20 bar H2). The advantage of this novel catalytic material is showcased for industrially important substrates, including adipodinitrile, picolinonitrile, and fatty acid nitriles. Notably, the developed system outperformed all other tested commercial catalysts, for example, Raney Nickel and even noble-metal-based systems in these transformations.
Hydrogenation of Aliphatic and Aromatic Nitriles Using a Defined Ruthenium PNP Pincer Catalyst
Neumann, Jacob,Bornschein, Christoph,Jiao, Haijun,Junge, Kathrin,Beller, Matthias
supporting information, p. 5944 - 5948 (2015/09/22)
Selective catalytic reductions of nitriles are presented using the commercially available Ru-Macho-BH complex. A variety of aliphatic, aromatic and (hetero)cyclic nitriles including industrially important adipodinitrile are hydrogenated to the corresponding primary amines. Modelling suggests the reaction follows an outer sphere hydrogenation mechanism. An efficient and selective catalytic reduction of nitriles is presented using the commercially available Ru-Macho-BH complex. A variety of aliphatic, aromatic and (hetero)cyclic nitriles including the industrially important adipodinitrile are hydrogenated to the corresponding primary amines. The reaction follows an outer-sphere mechanism.
Tricyclic Compounds As mPGES-1 Inhibitors
-
Page/Page column 27, (2012/05/07)
The present invention relates to tricyclic compounds of formula (I) or pharmaceutically acceptable salt thereof as mPGES-1 inhibitors. These compounds are inhibitors of the microsomal prostaglandin E synthase-1 (mPGES-1) enzyme and are therefore useful in the treatment of pain and/or inflammation from a variety of diseases or conditions, such as asthma, osteoarthritis, rheumatoid arthritis, acute or chronic pain and neurodegenerative diseases.
PURINE DERIVATIVES AS IMMUNOMODULATORS
-
Page/Page column 105, (2008/12/08)
The present invention includes novel compounds useful in the treatment of various disorders in particular infectious diseases, cancer, and allergic diseases and other inflammatory conditions for example allergic rhinitis and asthma, and as vaccine adjuvants
Discovery of imidazolidine-2,4-dione-linked HIV protease inhibitors with activity against lopinavir-resistant mutant HIV
Flosi, William J.,DeGoey, David A.,Grampovnik, David J.,Chen, Hui-ju,Klein, Larry L.,Dekhtyar, Tatyana,Masse, Sherie,Marsh, Kennan C.,Mo, Hong Mei,Kempf, Dale
, p. 6695 - 6712 (2007/10/03)
A new series of HIV protease inhibitors has been designed and synthesized based on the combination of the (R)-(hydroxyethylamino)sulfonamide isostere and the cyclic urea component of lopinavir. The series was optimized by replacing the 6-membered cyclic urea linker with an imidazolidine-2,4-dione which readily underwent N-alkylation to incorporate various methylene-linked heterocycle groups that bind favorably in site 3 of HIV protease. Significant improvements compared to lopinavir were seen in cell culture activity versus wild-type virus (pNL4-3) and the lopinavir-resistant mutant virus A17 (generated by in vitro serial passage of HIV-1 (pNL4-3) in MT-4 cells). Select imidazolidine-2,4-dione containing PIs were also more effective at inhibiting highly resistant patient isolates Pt1 and Pt2 than lopinavir. Pharmacokinetic data collected for compounds in this series varied considerably when coadministered orally in the rat with an equal amount of ritonavir (5 mg/kg each). The AUC values ranged from 0.144 to 12.33 μg h/mL.
Synthesis of N-1-alkylated 6-benzyluracil-5-carboxylic esters as potential non-nucleoside reverse transcriptase inhibitors
Larsen, Janus S.,Pedersen, Erik B.,Nielsen, Claus
, p. 1874 - 1878 (2007/10/03)
A series of N-1-alkylated 6-benzyluracil-5-carboxylic esters 4a-h were synthesized by reacting imines of 3-oxo-4-phenylbutyrates with N-(chlorocarbonyl) isocyanate. An N-1-(4-methoxybenzyl) group could be removed in a dealkylation reaction to give the ethyl and allyl esters 5a and 5b, respectively. They were N-1-alkylated with chloromethyl ethyl ether or dialloxymethane. Unfortunately no biological activity against HIV-1 and HSV was observed for any of the synthesized compounds.
Sulfonamide inhibitors of aspartyl protease
-
Example 114, (2008/06/13)
The present invention relates to a novel class of sulfonamides which are aspartyl protease inhibitors. In one embodiment, this invention relates to a novel class of HIV aspartyl protease inhibitors characterized by specific structural and physicochemical features. This invention also relates to pharmaceutical compositions comprising these compounds. The compounds and pharmaceutical compositions of this invention are particularly well suited for inhibiting HIV-1 and HIV-2 protease activity and consequently, may be advantageously used as anti-viral agents against the HIV-1 and HIV-2 viruses. This invention also relates to methods for inhibiting the activity of HIV aspartyl protease using the compounds of this invention and methods for screening compounds for anti-HIV activity.
THF-CONTAINING SULFONAMIDE INHIBITORS OF ASPARTYL PROTEASE
-
, (2008/06/13)
The present invention relates to a class of THF-containing sulfonamides which are aspartyl protease inhibitors. This invention also relates to pharmaceutical compositions comprising these compounds. The compounds and pharmaceutical compositions of this invention are particularly well suited for inhibiting HIV-1 and HIV-2 protease activity and consequently, may be advantageously used as anti-viral agents against the HIV-1 and HIV-2 viruses. This invention also relates to methods for inhibiting the activity of HIV aspartyl protease using the compounds of this invention.
SULFONAMIDE INHIBITORS OF ASPARTYL PROTEASE
-
, (2010/12/01)
The present invention relates to a novel class of sulfonamides which are aspartyl protease inhibitors. In one embodiment, this invention relates to a novel class of HIV aspartyl protease inhibitors characterized by specific structural and physicochemical features. This invention also relates to pharmaceutical compositions comprising these compounds. The compounds and pharmaceutical compositions of this invention are particularly well suited for inhibiting HIV-1 and HIV-2 protease activity and consequently, may be advantageously used as anti-viral agents against the HIV-1 and HIV-2 viruses. This invention also relates to methods for inhibiting the activity of HIV aspartyl protease using the compounds of this invention and methods for screening compounds for anti-HIV activity.