Welcome to LookChem.com Sign In|Join Free

CAS

  • or

609-35-8

Post Buying Request

609-35-8 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

609-35-8 Usage

General Description

3-Furanecarboxamide is a chemical compound with the molecular formula C5H5NO2. It is a white solid at room temperature and is soluble in water. 3-FURANECARBOXAMIDE is used in the pharmaceutical industry for the synthesis of various drugs and as a building block in organic synthesis. It has applications in the production of agrochemicals, flavors, fragrances, and other industrial products. Additionally, 3-furanecarboxamide is used as a reagent in chemical reactions and as a precursor to other functionalized compounds. It can also act as a ligand in coordination chemistry and has potential use in the development of new materials and technologies.

Check Digit Verification of cas no

The CAS Registry Mumber 609-35-8 includes 6 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 3 digits, 6,0 and 9 respectively; the second part has 2 digits, 3 and 5 respectively.
Calculate Digit Verification of CAS Registry Number 609-35:
(5*6)+(4*0)+(3*9)+(2*3)+(1*5)=68
68 % 10 = 8
So 609-35-8 is a valid CAS Registry Number.

609-35-8SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 17, 2017

Revision Date: Aug 17, 2017

1.Identification

1.1 GHS Product identifier

Product name furan-3-carboxamide

1.2 Other means of identification

Product number -
Other names furan-3-carboxylic acid amide

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:609-35-8 SDS

609-35-8Relevant articles and documents

Transamidation for the Synthesis of Primary Amides at Room Temperature

Chen, Jiajia,Lee, Sunwoo,Xia, Yuanzhi

supporting information, (2020/05/05)

Various primary amides have been synthesized using the transamidation of various tertiary amides under metal-free and mild reaction conditions. When (NH4)2CO3 reacts with a tertiary amide bearing an N-electron-withdrawing substituent, such as sulfonyl and diacyl, in DMSO at 25 °C, the desired primary amide product is formed in good yield with good funcctional group tolerance. In addition, N-tosylated lactam derivatives afforded their corresponding N-tosylamido alkyl amide products via a ring opening reaction.

Hydration of nitriles using a metal-ligand cooperative ruthenium pincer catalyst

Guo, Beibei,Otten, Edwin,De Vries, Johannes G.

, p. 10647 - 10652 (2019/12/02)

Nitrile hydration provides access to amides that are important structural elements in organic chemistry. Here we report catalytic nitrile hydration using ruthenium catalysts based on a pincer scaffold with a dearomatized pyridine backbone. These complexes catalyze the nucleophilic addition of H2O to a wide variety of aliphatic and (hetero)aromatic nitriles in tBuOH as solvent. Reactions occur under mild conditions (room temperature) in the absence of additives. A mechanism for nitrile hydration is proposed that is initiated by metal-ligand cooperative binding of the nitrile.

Phosphinous Acid-Assisted Hydration of Nitriles: Understanding the Controversial Reactivity of Osmium and Ruthenium Catalysts

González-Fernández, Rebeca,Crochet, Pascale,Cadierno, Victorio,Menéndez, M. Isabel,López, Ramón

, p. 15210 - 15221 (2017/10/12)

The synthesis and catalytic behavior of the osmium(II) complexes [OsCl2(η6-p-cymene)(PR2OH)] [R=Me (2 a), Ph (2 b), OMe (2 c), OPh (2 d)] in nitrile hydration reactions is presented. Among them, the best catalytic results were obtained with the phosphinous acid derivative [OsCl2(η6-p-cymene)(PMe2OH)] (2 a), which selectively provided the desired primary amides in excellent yields and short times at 80 °C, employing directly water as solvent, and without the assistance of any basic additive (TOF values up to 200 h?1). The process was successful with aromatic, heteroaromatic, aliphatic, and α,β-unsaturated organonitriles, and showed a high functional group tolerance. Indeed, complex 2 a represents the most active and versatile osmium-based catalyst for the hydration of nitriles reported so far in the literature. In addition, it exhibits a catalytic performance similar to that of its ruthenium analogue [RuCl2(η6-p-cymene)(PMe2OH)] (4). However, when compared to 4, the osmium complex 2 a turned out to be faster in the hydration of less-reactive aliphatic nitriles, whereas the opposite trend was generally observed with aromatic substrates. DFT calculations suggest that these differences in reactivity are mainly related to the ring strain associated with the key intermediate in the catalytic cycle, that is, a five-membered metallacyclic species generated by intramolecular addition of the hydroxyl group of the phosphinous acid ligand to the metal-coordinated nitrile.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 609-35-8