Welcome to LookChem.com Sign In|Join Free

CAS

  • or

614-14-2

Post Buying Request

614-14-2 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

614-14-2 Usage

Uses

1-Phenyl-1-butanol is an intermediate in the synthesis of (E)-1-Phenyl-1-butene (P319495), a compound used to study olefin oxidation by cytochrome P-450.

Check Digit Verification of cas no

The CAS Registry Mumber 614-14-2 includes 6 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 3 digits, 6,1 and 4 respectively; the second part has 2 digits, 1 and 4 respectively.
Calculate Digit Verification of CAS Registry Number 614-14:
(5*6)+(4*1)+(3*4)+(2*1)+(1*4)=52
52 % 10 = 2
So 614-14-2 is a valid CAS Registry Number.
InChI:InChI=1/C10H14O/c1-2-6-10(11)9-7-4-3-5-8-9/h3-5,7-8,10-11H,2,6H2,1H3

614-14-2SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 12, 2017

Revision Date: Aug 12, 2017

1.Identification

1.1 GHS Product identifier

Product name 1-Phenyl-1-butanol

1.2 Other means of identification

Product number -
Other names 1-PHENYL-1-BUTANOL

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:614-14-2 SDS

614-14-2Relevant articles and documents

Zirconium-catalyzed cyclopropanation of α-olefins mediated by R′CO2R″ and ClnAlEt3-n

Khafizova, Leila O.,Gubaidullin, Rinat R.,Dzhemilev, Usein M.

, p. 9142 - 9147 (2011)

A Cp2ZrCl2-catalyzed one-pot cyclopropanation method has been developed to afford alkoxycyclopropanes and cyclopropanols from α-olefins involving esters of carboxylic acids and ClnAlEt 3-n.

Pincerlike molybdenum complex and preparation method thereof, catalytic composition and application thereof, and alcohol preparation method

-

Paragraph 0125-0130, (2021/08/11)

The invention discloses a clamp-type molybdenum complex, a preparation method, a corresponding catalyst composition and application. The method comprises the steps: obtaining 9 molybdenum complexes with different structures through coordination reaction of 2-(substituent ethyl)-(5, 6, 7, 8-tetrahydroquinolyl) amine and a corresponding carbonyl molybdenum metal precursor; and catalyzing a ketone compound transfer hydrogenation reaction through a molybdenum complex to generate 40 alcohol compounds. The preparation method of the molybdenum complex is simple, high in yield and good in stability. For a transfer hydrogenation reaction of ketone, the molybdenum-based catalytic system has high catalytic activity and small molybdenum loading capacity, is used for production of aromatic and aliphatic alcohols, and has the advantages of simple method, small environmental pollution and high yield.

Method for synthesizing secondary alcohol in water phase

-

Paragraph 0038-0039, (2021/07/14)

The invention discloses a method for synthesizing secondary alcohol in a water phase. The method comprises the following steps: taking ketone as a raw material, selecting water as a solvent, and carrying out catalytic hydrogenation reaction on the ketone in the presence of a water-soluble catalyst to obtain the secondary alcohol, wherein the catalyst is a metal iridium complex [Cp * Ir (2, 2'-bpyO)(OH)][Na]. Water is used as the solvent, so that the use of an organic solvent is avoided, and the method is more environment-friendly; the reaction is carried out at relatively low temperature and normal pressure, and the reaction conditions are mild; alkali is not needed in the reaction, so that generation of byproducts is avoided; and the conversion rate of the raw materials is high, and the yield of the obtained product is high. The method not only has academic research value, but also has a certain industrialization prospect.

Visible Light Induced Reduction and Pinacol Coupling of Aldehydes and Ketones Catalyzed by Core/Shell Quantum Dots

Xi, Zi-Wei,Yang, Lei,Wang, Dan-Yan,Feng, Chuan-Wei,Qin, Yufeng,Shen, Yong-Miao,Pu, Chaodan,Peng, Xiaogang

, p. 2474 - 2488 (2021/02/05)

We present an efficient and versatile visible light-driven methodology to transform aryl aldehydes and ketones chemoselectively either to alcohols or to pinacol products with CdSe/CdS core/shell quantum dots as photocatalysts. Thiophenols were used as proton and hydrogen atom donors and as hole traps for the excited quantum dots (QDs) in these reactions. The two products can be switched from one to the other simply by changing the amount of thiophenol in the reaction system. The core/shell QD catalysts are highly efficient with a turn over number (TON) larger than 4 × 104 and 4 × 105 for the reduction to alcohol and pinacol formation, respectively, and are very stable so that they can be recycled for at least 10 times in the reactions without significant loss of catalytic activity. The additional advantages of this method include good functional group tolerance, mild reaction conditions, the allowance of selectively reducing aldehydes in the presence of ketones, and easiness for large scale reactions. Reaction mechanisms were studied by quenching experiments and a radical capture experiment, and the reasons for the switchover of the reaction pathways upon the change of reaction conditions are provided.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 614-14-2