Welcome to LookChem.com Sign In|Join Free

CAS

  • or

6161-50-8

Post Buying Request

6161-50-8 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

6161-50-8 Usage

Uses

3,3''-Dimethoxy-1,1''-biphenyl is a useful reactant in organic synthesis.

Check Digit Verification of cas no

The CAS Registry Mumber 6161-50-8 includes 7 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 4 digits, 6,1,6 and 1 respectively; the second part has 2 digits, 5 and 0 respectively.
Calculate Digit Verification of CAS Registry Number 6161-50:
(6*6)+(5*1)+(4*6)+(3*1)+(2*5)+(1*0)=78
78 % 10 = 8
So 6161-50-8 is a valid CAS Registry Number.

6161-50-8SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 13, 2017

Revision Date: Aug 13, 2017

1.Identification

1.1 GHS Product identifier

Product name 1-methoxy-3-(3-methoxyphenyl)benzene

1.2 Other means of identification

Product number -
Other names Biphenyl,3,3'-dimethoxy

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:6161-50-8 SDS

6161-50-8Relevant articles and documents

Visible Light Induced Aerobic Coupling of Arylboronic Acids Promoted by Hydrazone

Xia, Hongyu,Wang, Ganghu,Zhao, Dongbo,Zhu, Chunyin

supporting information, p. 922 - 929 (2022/02/10)

A visible-light-induced oxidative coupling of arylboronic acids has been developed for the synthesis of biaryls. The reaction that employs polydentate hydrazones as the bifunctional catalyst works smoothly under room temperature. It is compatible with a w

Zirconium-redox-shuttled cross-electrophile coupling of aromatic and heteroaromatic halides

Fu, Yue,Liu, Fang-Jie,Liu, Peng,Tang, Jian-Tao,Toste, F. Dean,Wu, Ting-Feng,Ye, Baihua,Zhang, Yue-Jiao

supporting information, p. 1963 - 1974 (2021/07/07)

Transition metal-catalyzed cross-electrophile coupling (XEC) is a powerful tool for forging C(sp2)–C(sp2) bonds in biaryl molecules from abundant aromatic halides. While the synthesis of unsymmetrical biaryl compounds through multimetallic XEC is of high synthetic value, the selective XEC of two heteroaromatic halides remains elusive and challenging. Herein, we report a homogeneous XEC method, which relies on a zirconaaziridine complex as a shuttle for dual palladium-catalyzed processes. The zirconaaziridine-mediated palladium (ZAPd)-catalyzed reaction shows excellent compatibility with various functional groups and diverse heteroaromatic scaffolds. In accord with density functional theory (DFT) calculations, a redox transmetallation between the oxidative addition product and the zirconaaziridine is proposed as the crucial elementary step. Thus, cross-coupling selectivity using a single transition metal catalyst is controlled by the relative rate of oxidative addition of Pd(0) into the aromatic halide. Overall, the concept of a combined reducing and transmetallating agent offers opportunities for the development of transition metal reductive coupling catalysis.

Tandem Mn–I Exchange and Homocoupling Processes Mediated by a Synergistically Operative Lithium Manganate

Uzelac, Marina,Mastropierro, Pasquale,de Tullio, Marco,Borilovic, Ivana,Tarrés, Màrius,Kennedy, Alan R.,Aromí, Guillem,Hevia, Eva

supporting information, p. 3247 - 3253 (2020/12/11)

Pairing lithium and manganese(II) to form lithium manganate [Li2Mn(CH2SiMe3)4] enables the efficient direct Mn–I exchange of aryliodides, affording transient (aryl)lithium manganate intermediates which in turn undergo spontaneous C?C homocoupling at room temperature to furnish symmetrical (bis)aryls in good yields under mild reaction conditions. The combination of EPR with X-ray crystallographic studies has revealed the mixed Li/Mn constitution of the organometallic intermediates involved in these reactions, including the homocoupling step which had previously been thought to occur via a single-metal Mn aryl species. These studies show Li and Mn working together in a synergistic manner to facilitate both the Mn–I exchange and the C?C bond-forming steps. Both steps are carefully synchronized, with the concomitant generation of the alkyliodide ICH2SiMe3 during the Mn–I exchange being essential to the aryl homocoupling process, wherein it serves as an in situ generated oxidant.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 6161-50-8