Welcome to LookChem.com Sign In|Join Free

CAS

  • or

623-93-8

Post Buying Request

623-93-8 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

623-93-8 Usage

Uses

5-Nonanol is used as intermediates in chemical research. It is used as natural substances and extractives.

Synthesis Reference(s)

The Journal of Organic Chemistry, 50, p. 4032, 1985 DOI: 10.1021/jo00221a014

Check Digit Verification of cas no

The CAS Registry Mumber 623-93-8 includes 6 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 3 digits, 6,2 and 3 respectively; the second part has 2 digits, 9 and 3 respectively.
Calculate Digit Verification of CAS Registry Number 623-93:
(5*6)+(4*2)+(3*3)+(2*9)+(1*3)=68
68 % 10 = 8
So 623-93-8 is a valid CAS Registry Number.
InChI:InChI=1/C9H20O/c1-3-5-7-9(10)8-6-4-2/h9-10H,3-8H2,1-2H3

623-93-8 Well-known Company Product Price

  • Brand
  • (Code)Product description
  • CAS number
  • Packaging
  • Price
  • Detail
  • Alfa Aesar

  • (L05812)  5-Nonanol, 98%   

  • 623-93-8

  • 25g

  • 437.0CNY

  • Detail

623-93-8SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 12, 2017

Revision Date: Aug 12, 2017

1.Identification

1.1 GHS Product identifier

Product name nonan-5-ol

1.2 Other means of identification

Product number -
Other names DI-n-BUTYL CARBINOL

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:623-93-8 SDS

623-93-8Relevant articles and documents

Structure-activity relationship (SAR) studies on the mutagenic properties of 2,7-diaminofluorene and 2,7-diaminocarbazole derivatives

Kim, Byeong Wook,Lee, Hwa,Keum, Gyochang,Kim, B. Moon

supporting information, (2020/11/27)

We discovered that 2,7-diaminofluorene or 2,7-diaminocarbazole moiety can be employed as a core structure of highly effective NS5A inhibitors that are connected through amide bonds to proline-valine-carbamate motifs. Amide bonds can be easily cleaved via various metabolic pathways upon administration into the body, and metabolites containing 2,7-diaminofluorene and 2,7-diaminocarbazole core structures have been known to be strong mutagens. To avoid the mutagenesis issue of these core structures, we examined various functional groups at the C9 or N9 position of 2,7-diaminofluorene or 2,7-diaminocarbazole, respectively, through the Ames test in TA98 and TA100 mutants of Salmonella typhimurium LT-2. We discovered that, through proper alkyl substitution at the C9 or N9 position, 2,7-diaminofluorene and 2,7-diaminocarbazole moieties can be successfully employed in drug discovery without necessarily causing mutagenicity problems.

Ni2P Nanoalloy as an Air-Stable and Versatile Hydrogenation Catalyst in Water: P-Alloying Strategy for Designing Smart Catalysts

Fujita, Shu,Yamaguchi, Sho,Yamasaki, Jun,Nakajima, Kiyotaka,Yamazoe, Seiji,Mizugaki, Tomoo,Mitsudome, Takato

supporting information, p. 4439 - 4446 (2021/02/09)

Non-noble metal-based hydrogenation catalysts have limited practical applications because they exhibit low activity, require harsh reaction conditions, and are unstable in air. To overcome these limitations, herein we propose the alloying of non-noble metal nanoparticles with phosphorus as a promising strategy for developing smart catalysts that exhibit both excellent activity and air stability. We synthesized a novel nickel phosphide nanoalloy (nano-Ni2P) with coordinatively unsaturated Ni active sites. Unlike conventional air-unstable non-noble metal catalysts, nano-Ni2P retained its metallic nature in air, and exhibited a high activity for the hydrogenation of various substrates with polar functional groups, such as aldehydes, ketones, nitriles, and nitroarenes to the desired products in excellent yields in water. Furthermore, the used nano-Ni2P catalyst was easy to handle in air and could be reused without pretreatment, providing a simple and clean catalyst system for general hydrogenation reactions.

Fast Addition of s-Block Organometallic Reagents to CO2-Derived Cyclic Carbonates at Room Temperature, Under Air, and in 2-Methyltetrahydrofuran

Elorriaga, David,de la Cruz-Martínez, Felipe,Rodríguez-álvarez, María Jesús,Lara-Sánchez, Agustín,Castro-Osma, José Antonio,García-álvarez, Joaquín

, p. 2084 - 2092 (2021/04/02)

Fast addition of highly polar organometallic reagents (RMgX/RLi) to cyclic carbonates (derived from CO2 as a sustainable C1 synthon) has been studied in 2-methyltetrahydrofuran as a green reaction medium or in the absence of external volatile organic solvents, at room temperature, and in the presence of air/moisture. These reaction conditions are generally forbidden with these highly reactive main-group organometallic compounds. The correct stoichiometry and nature of the polar organometallic alkylating or arylating reagent allows straightforward synthesis of: highly substituted tertiary alcohols, β-hydroxy esters, or symmetric ketones, working always under air and at room temperature. Finally, an unprecedented one-pot/two-step hybrid protocol is developed through combination of an Al-catalyzed cycloaddition of CO2 and propylene oxide with the concomitant fast addition of RLi reagents to the in situ and transiently formed cyclic carbonate, thus allowing indirect conversion of CO2 into the desired highly substituted tertiary alcohols without need for isolation or purification of any reaction intermediates.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 623-93-8