Welcome to LookChem.com Sign In|Join Free

CAS

  • or

624-16-8

Post Buying Request

624-16-8 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

624-16-8 Usage

Chemical Properties

CLEAR COLOURLESS LIQUID

Check Digit Verification of cas no

The CAS Registry Mumber 624-16-8 includes 6 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 3 digits, 6,2 and 4 respectively; the second part has 2 digits, 1 and 6 respectively.
Calculate Digit Verification of CAS Registry Number 624-16:
(5*6)+(4*2)+(3*4)+(2*1)+(1*6)=58
58 % 10 = 8
So 624-16-8 is a valid CAS Registry Number.
InChI:InChI=1/C10H20O/c1-3-5-6-7-9-10(11)8-4-2/h3-9H2,1-2H3

624-16-8SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 12, 2017

Revision Date: Aug 12, 2017

1.Identification

1.1 GHS Product identifier

Product name decan-4-one

1.2 Other means of identification

Product number -
Other names MKJDUHZPLQYUCB-UHFFFAOYSA

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:624-16-8 SDS

624-16-8Relevant articles and documents

Ruthenium-on-Carbon-Catalyzed Facile Solvent-Free Oxidation of Alcohols: Efficient Progress under Solid-Solid (Liquid)-Gas Conditions

Park, Kwihwan,Jiang, Jing,Yamada, Tsuyoshi,Sajiki, Hironao

, p. 1200 - 1205 (2021/12/29)

A protocol for the ruthenium-on-carbon (Ru/C)-catalyzed solvent-free oxidation of alcohols, which proceeds efficiently under solid-solid (liquid)-gas conditions, was developed. Various primary and secondary alcohols were transformed to corresponding aldehydes and ketones in moderate to excellent isolated yields by simply stirring in the presence of 10% Ru/C under air or oxygen conditions. The solvent-free oxidation reactions proceeded efficiently regardless of the solid or liquid state of the substrates and reagents and could be applied to gram-scale synthesis without loss of the reaction efficiency. Furthermore, the catalytic activity of Ru/C was maintained after five reuse cycles.

METHOD FOR CONVERTING HYDROXYL GROUP OF ALCOHOL

-

Paragraph 0495-0496, (2021/02/19)

The present invention relates to: a method for converting a hydroxyl group of an alcohol; and a catalyst which makes the method possible. A method for converting a hydroxyl group of an alcohol according to the present invention is characterized by producing a compound represented by CH(R1)(R2)Nu (wherein R1, R2 and Nu are as defined below) by reacting an alcohol represented by CH(R1)(R2)OH (wherein each of R1 and R2 represents a hydrogen atom, an optionally substituted alkyl group, or the like) and a compound having an active proton, which is represented by H-Nu (wherein Nu represents a group represented by —CHX1-EWG1 or —NR3R4; X1 represents a hydrogen atom or the like; EWG1 represents an electron-withdrawing group; and each of R3 and R4 represents a hydrogen atom, an optionally substituted alkyl group, or the like), with each other in the presence of a complex of a group 7-11 metal of the periodic table and at least one solid base that is selected from the group consisting of layered double hydroxides, composite oxides and calcium hydroxide.

Selective Visible Light Aerobic Photocatalytic Oxygenation of Alkanes to the Corresponding Carbonyl Compounds

Somekh, Miriam,Khenkin, Alexander M.,Herman, Adi,Neumann, Ronny

, p. 8819 - 8824 (2019/09/30)

The aerobic, selective oxygenation of alkanes via C-H bond activation is an important research challenge. Photocatalysis offers the potential for the introduction of additional concepts for such reactions. Visible light photoactive semiconductors such as bismuth oxyhalides (BiOX, X = Cl and Br) used in this research typically oxidize organic compounds through photocatalyzed formation of strongly oxidizing holes. The reactive oxygen species formed react with organic compounds in one-electron processes, leading to radical intermediates and nonselective oxidation. Such oxidation reactions generally lead to total oxidation. Here, impregnation of BiOX with a polyoxometalate, H5PV2Mo10O40, as a strong electron acceptor changed the reactivity of BiOX, leading to Mars-van Krevelen-type reactivity, that is, photoactivated oxygen donation from BiOX to the organic substrate followed by reoxidation by O2 and catalysis. This conclusion was supported by mechanistic studies involving isotope labeling studies. In this way, ethane was selectively oxidized to acetaldehyde in a flow reactor with a turnover number (24 h) of 415.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 624-16-8