Welcome to LookChem.com Sign In|Join Free

CAS

  • or

629-54-9

Post Buying Request

629-54-9 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

629-54-9 Usage

Uses

Hexadecanamide can be used to prepare tissue regeneration.

Definition

ChEBI: A fatty amide that is the carboxamide derived from palmitic acid.

Safety Profile

When heated to decomposition it emits acrid smoke and irritating fumes

Purification Methods

Crystallise the amide from thiophene-free *benzene and dry it under vacuum over P2O5. It is slightly soluble in EtOH, Me2CO, CHCl3 and toluene but insoluble in H2O. [Beilstein 2 H 374, 2 II 341, 2 III 975, 2 IV 1182.]

Check Digit Verification of cas no

The CAS Registry Mumber 629-54-9 includes 6 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 3 digits, 6,2 and 9 respectively; the second part has 2 digits, 5 and 4 respectively.
Calculate Digit Verification of CAS Registry Number 629-54:
(5*6)+(4*2)+(3*9)+(2*5)+(1*4)=79
79 % 10 = 9
So 629-54-9 is a valid CAS Registry Number.
InChI:InChI=1/C16H33NO/c1-2-3-4-5-6-7-8-9-10-11-12-13-14-15-16(17)18/h2-15H2,1H3,(H2,17,18)

629-54-9SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 12, 2017

Revision Date: Aug 12, 2017

1.Identification

1.1 GHS Product identifier

Product name hexadecanamide

1.2 Other means of identification

Product number -
Other names Amide HPL

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:629-54-9 SDS

629-54-9Relevant articles and documents

Mechanochemical Synthesis of Primary Amides

Gómez-Carpintero, Jorge,Sánchez, J. Domingo,González, J. Francisco,Menéndez, J. Carlos

, p. 14232 - 14237 (2021/10/20)

Ball milling of aromatic, heteroaromatic, vinylic, and aliphatic esters with ethanol and calcium nitride afforded the corresponding primary amides in a transformation that was compatible with a variety of functional groups and maintained the integrity of a stereocenter α to carbonyl. This methodology was applied to α-amino esters and N-BOC dipeptide esters and also to the synthesis of rufinamide, an antiepileptic drug.

Selective Transformations of Triglycerides into Fatty Amines, Amides, and Nitriles by using Heterogeneous Catalysis

Jamil, Md. A. R.,Siddiki, S. M. A. Hakim,Touchy, Abeda Sultana,Rashed, Md. Nurnobi,Poly, Sharmin Sultana,Jing, Yuan,Ting, Kah Wei,Toyao, Takashi,Maeno, Zen,Shimizu, Ken-ichi

, p. 3115 - 3125 (2019/04/26)

The use of triglycerides as an important class of biomass is an effective strategy to realize a more sustainable society. Herein, three heterogeneous catalytic methods are reported for the selective one-pot transformation of triglycerides into value-added chemicals: i) the reductive amination of triglycerides into fatty amines with aqueous NH3 under H2 promoted by ZrO2-supported Pt clusters; ii) the amidation of triglycerides under gaseous NH3 catalyzed by high-silica H-beta (Hβ) zeolite at 180 °C; iii) the Hβ-promoted synthesis of nitriles from triglycerides and gaseous NH3 at 220 °C. These methods are widely applicable to the transformation of various triglycerides (C4–C18 skeletons) into the corresponding amines, amides, and nitriles.

Metal-Free Thermal Activation of Molecular Oxygen Enabled Direct α-CH2-Oxygenation of Free Amines

Ghosh, Santanu,Jana, Chandan K.

, p. 260 - 266 (2018/02/19)

Direct oxidation of α-CH2 group of free amines is hard to achieve due to the higher reactivity of amine moiety. Therefore, oxidation of amines involves the use of sophisticated metallic reagents/catalyst in the presence or absence of hazardous oxidants under sensitive reaction conditions. A novel method for direct C-H oxygenation of aliphatic amines through a metal-free activation of molecular oxygen has been developed. Both activated and unactivated free amines were oxygenated efficiently to provide a wide variety of amides (primary, secondary) and lactams under operationally simple conditions without the aid of metallic reagents and toxic oxidants. The method has been applied to the synthesis of highly functionalized amide-containing medicinal drugs, such as O-Me-alibendol and -buclosamide.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 629-54-9