63349-52-0Relevant articles and documents
Syntheses of radioiodinated pyrimidine-2,4,6-triones as potential agents for non-invasive imaging of matrix metalloproteinases
Breyholz, Hans-J?rg,Kopka, Klaus,Sch?fers, Michael,Wagner, Stefan
, (2017)
Dysregulated expression or activation of matrix metalloproteinases (MMPs) is observed in many kinds of live-threatening diseases. Therefore, MMP imaging for example with radiolabelled MMP inhibitors (MMPIs) potentially represents a valuable tool for clinical diagnostics using non-invasive single photon emission computed tomography (SPECT) or positron emission tomography (PET) imaging. This work includes the organic chemical syntheses and in vitro evaluation of five iodinated barbiturate based MMPIs and the selection of derivative 9 for radiosyntheses of isotopologues [123I]9 potentially useful for MMP SPECT imaging and [124I]9 for MMP PET imaging.
Preparation method of carboxylic ester compound
-
Paragraph 0048-0049, (2021/03/30)
The invention relates to a preparation method of a carboxylic ester compound, which comprises the following steps: reacting carboxylic acid with methanol in air under the catalysis of nitrite to obtain an ester compound, the preparation method disclosed by the invention has the advantages of rich raw material sources, cheap and easily available catalyst, mild reaction conditions, simplicity and convenience in operation and the like, a series of fatty carboxylic acids can be modified with high yield, and particularly, the traditional esterification method is generally not suitable for esterification of drug molecules. By utilizing the method, a series of known drug molecules can be modified, so that a shortcut is provided for discovering new drug molecules.
Green Esterification of Carboxylic Acids Promoted by tert-Butyl Nitrite
Cheng, Xionglve,Jiang, Gangzhong,Li, Xingxing,Tao, Suyan,Wan, Xiaobing,Zhao, Yanwei,Zheng, Yonggao
supporting information, p. 2713 - 2718 (2021/06/25)
In this work, the green esterification of carboxylic acids promoted by tert-butyl nitrite has been well developed. This transformation is compatible with a broad range of substrates and exhibits excellent functional group tolerance. Various drugs and substituted amino acids are applicable to this reaction under near neutral conditions, with good to excellent yields.
Insertion of Diazo Esters into C-F Bonds toward Diastereoselective One-Carbon Elongation of Benzylic Fluorides: Unprecedented BF3Catalysis with C-F Bond Cleavage and Re-formation
Wang, Fei,Nishimoto, Yoshihiro,Yasuda, Makoto
supporting information, p. 20616 - 20621 (2021/11/23)
Selective transformation of C-F bonds remains a significant goal in organic chemistry, but C-F insertion of a one-carbon-atom unit has never been established. Herein we report the BF3-catalyzed formal insertion of diazo esters as one-carbon-atom sources into C-F bonds to accomplish one-carbon elongation of benzylic fluorides. A DFT calculation study revealed that the BF3 catalyst could contribute to both C-F bond cleavage and re-formation. This elongation provided α-fluoro-α,β-diaryl esters with a high level of diastereoselectivity. Various benzylic fluorides and diazo esters were applicable. The synthetic utility of this method was demonstrated by the synthesis of a fluoro analogue of a compound that is used as a transient receptor and potential canonical channel inhibitor.
Electrochemical oxidative: Z -selective C(sp2)-H chlorination of acrylamides
Coles, Simon J.,Hareram, Mishra Deepak,Harnedy, James,Morrill, Louis C.,Tizzard, Graham J.
supporting information, p. 12643 - 12646 (2021/12/07)
An electrochemical method for the oxidative Z-selective C(sp2)-H chlorination of acrylamides has been developed. This catalyst and organic oxidant free method is applicable across various substituted tertiary acrylamides, and provides access to a broad range of synthetically useful Z-β-chloroacrylamides in good yields (22 examples, 73% average yield). The orthogonal derivatization of the products was demonstrated through chemoselective transformations and the electrochemical process was performed on gram scale in flow.
PROTEIN KINASE C AGONISTS
-
Paragraph 0345, (2020/09/12)
The present disclosure relates generally to certain diacylglycerol lactone compounds, pharmaceutical compositions comprising said compounds, and methods of making and using said compounds and pharmaceutical compositions. The compounds and compositions disclosed herein may be used for the treatment or prevention of diseases, disorders, or infections modifiable by protein kinase C (PKC) agonists, such as HIV.
Generation of Organozinc Reagents from Arylsulfonium Salts Using a Nickel Catalyst and Zinc Dust
Yamada, Kodai,Yanagi, Tomoyuki,Yorimitsu, Hideki
, p. 9712 - 9718 (2021/01/09)
Readily available aryldimethylsulfonium triflates react with zinc powder under nickel catalysis via the selective cleavage of the sp2-hybridized carbon-sulfur bond to produce salt-free arylzinc triflates under mild conditions. This zincation displays superb chemoselectivity and thus represents a protocol that is complementary or orthogonal to existing methods. The generated arylzinc reagents show both high reactivity and chemoselectivity in palladium-catalyzed and copper-mediated cross-coupling reactions.
Blue Light-Promoted N?H Insertion of Carbazoles, Pyrazoles and 1,2,3-Triazoles into Aryldiazoacetates
Stivanin, Mateus L.,Fernandes, Alessandra A. G.,da Silva, Amanda F.,Okada, Celso Y.,Jurberg, Igor D.
supporting information, p. 1106 - 1111 (2020/01/25)
Blue light irradiation of aryldiazoacetates leads to the formation of free carbenes, which can react with carbazoles, pyrazoles and 1,2,3-triazoles to afford the corresponding N?H inserted products. These reactions are performed under air and at room temperature, allowing the mild preparation of a variety of motifs found in biologically relevant targets. (Figure presented.).
Room Temperature Coupling of Aryldiazoacetates with Boronic Acids Enhanced by Blue Light Irradiation
da Silva, Amanda F.,Afonso, Marco A. S.,Cormanich, Rodrigo A.,Jurberg, Igor D.
supporting information, p. 5648 - 5653 (2020/04/22)
A visible-light-promoted photochemical protocol is reported for the coupling of aryldiazoacetates with boronic acids. This photochemical reaction shows great enhancement compared to the same protocol performed in the absence of light. Except for a few cases, the room temperature coupling in the dark (thermal process) generally does not work. When it does, it is likely to also involve free carbenes as key intermediates. Alternatively, photochemical reactions show a broad scope, can be performed under air and tolerate a wide variety of functional groups. Reaction-evolution monitoring, DFT calculations and control experiments have been used to evaluate the main aspects of this intricate mechanistic scenario. Biologically active molecules Adiphenine, Benactyzine and Aprophen have been prepared as examples of synthetic applications.
Oxidative Approach Enables Efficient Access to Cyclic Azobenzenes
Maier, Martin S.,Hüll, Katharina,Reynders, Martin,Matsuura, Bryan S.,Leippe, Philipp,Ko, Tongil,Sch?ffer, Lukas,Trauner, Dirk
supporting information, p. 17295 - 17304 (2019/11/03)
Azobenzenes are versatile photoswitches that have found widespread use in a variety of fields, ranging from photopharmacology to the material sciences. In addition to regular azobenzenes, the cyclic diazocines have recently emerged. Although diazocines have fascinating conformational and photophysical properties, their use has been limited by their synthetic accessibility. Herein, we present a general, high-yielding protocol that relies on the oxidative cyclization of dianilines. In combination with a modular substrate synthesis, it allows for rapid access to diversely functionalized diazocines on gram scales. Our work systematically explores substituent effects on the photoisomerization and thermal relaxation of diazocines. It will enable their incorporation into a wide variety of functional molecules, unlocking the full potential of these emerging photoswitches. The method can be applied to the synthesis of a new cyclic azobenzene with a nine-membered central ring and distinct properties.