Welcome to LookChem.com Sign In|Join Free

CAS

  • or

66534-97-2

Post Buying Request

66534-97-2 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

66534-97-2 Usage

Uses

It is involved in the Synthesis of the new chiral aminodiphosphine ligands.

Check Digit Verification of cas no

The CAS Registry Mumber 66534-97-2 includes 8 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 5 digits, 6,6,5,3 and 4 respectively; the second part has 2 digits, 9 and 7 respectively.
Calculate Digit Verification of CAS Registry Number 66534-97:
(7*6)+(6*6)+(5*5)+(4*3)+(3*4)+(2*9)+(1*7)=152
152 % 10 = 2
So 66534-97-2 is a valid CAS Registry Number.
InChI:InChI=1/C28H29NP2/c1-5-13-25(14-6-1)30(26-15-7-2-8-16-26)23-21-29-22-24-31(27-17-9-3-10-18-27)28-19-11-4-12-20-28/h1-20,29H,21-24H2

66534-97-2 Well-known Company Product Price

  • Brand
  • (Code)Product description
  • CAS number
  • Packaging
  • Price
  • Detail
  • Alfa Aesar

  • (H60250)  Bis[2-(diphenylphosphino)ethyl]ammonium chloride, 97+%   

  • 66534-97-2

  • 250mg

  • 237.0CNY

  • Detail
  • Alfa Aesar

  • (H60250)  Bis[2-(diphenylphosphino)ethyl]ammonium chloride, 97+%   

  • 66534-97-2

  • 1g

  • 687.0CNY

  • Detail
  • Alfa Aesar

  • (H60250)  Bis[2-(diphenylphosphino)ethyl]ammonium chloride, 97+%   

  • 66534-97-2

  • 5g

  • 2646.0CNY

  • Detail

66534-97-2SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 18, 2017

Revision Date: Aug 18, 2017

1.Identification

1.1 GHS Product identifier

Product name 2-diphenylphosphanyl-N-(2-diphenylphosphanylethyl)ethanamine,hydrochloride

1.2 Other means of identification

Product number -
Other names Ethanamine,2-(diphenylphosphino)-N-[2-(diphenylphosphino)ethyl]-,hydrochloride

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:66534-97-2 SDS

66534-97-2Relevant articles and documents

Electrocatalytic property, anticancer activity, and density functional theory calculation of [NiCl(P^N^P)]Cl.EtOH

Mohammadnezhad, Gholamhossein,Abad, Saeed,Farrokhpour, Hossein,G?rls, Helmar,Plass, Winfried

, (2020/12/01)

This study describes the electrocatalytic, anticancer, and density functional theory (DFT) studies of a nickel complex, [NiCl(P^N^P)]Cl.EtOH, based on a neutral P^N^P-type pincer ligand (P^N^P = bis[(2-diphenylphosphino)ethyl]amine). The ligand was synthesized without time-consuming and costly amine protection. It was characterized by 1H NMR, 31P NMR, Fourier transform infrared (FT-IR), UV–vis, and single-crystal X-ray diffraction. The complex was isolated as a solvated chloride salt and characterized by FT-IR, UV–visible, 1H NMR, 13C NMR, and 31P NMR spectroscopies as well as single-crystal X-ray diffraction and CHN analysis. The ligand and complex crystallized in a monoclinic P21/c space group. The molecular structure of the complex contains a four-coordinated distorted nickel ion with square-planar geometry. The electrocatalytic hydrogen ion reduction was studied for the nickel complex in an acidic non-aqueous medium. Cyclic voltammetry studies showed that this complex is an efficient electrocatalyst for hydrogen evolution at the potential of the Ni(II/I) couple. As a potential anticancer agent, the biological activities of the Ni complex were tested against two human cancer cell lines (MCF7 and HT29). The IC50 results demonstrated that the nickel complex has better cytotoxic activity than cis-platin against the human breast cancer cell (MCF7) line. DFT calculations were performed to study the kinetics and thermodynamics of the pincer ligand's synthetic procedure and its Ni complex. Time-dependent DFT calculations were performed to calculate the pincer ligand's UV–vis spectra and the complex, which was in agreement with the experimental data. To assign the calculated UV spectra, molecular orbital calculations were performed. Finally, a modified mechanism was proposed for the electrocatalytic hydrogen ion reduction by [Ni(P^N^P)Cl]Cl.EtOH. The theoretical calculations showed that the cycle is thermodynamically favorable.

Sustainable Manganese-Catalyzed Solvent-Free Synthesis of Pyrroles from 1,4-Diols and Primary Amines

Borghs, Jannik C.,Lebedev, Yury,Rueping, Magnus,El-Sepelgy, Osama

supporting information, p. 70 - 74 (2019/01/11)

A general and selective metal-catalyzed conversion of biomass-derived primary diols and amines to the highly valuable 2,5-unsubstituted pyrroles has been developed. The reaction is catalyzed by a stable nonprecious manganese complex (1 mol %) in the absence of organic solvents whereby water and molecular hydrogen are the only side products. The manganese catalyst shows unprecedented selectivity, avoiding the formation of pyrrolidines, cyclic imides, and lactones.

Stereospecific polymerization of 1,3-butadiene catalyzed by cobalt complexes bearing N-containing diphosphine PNP ligands

Chen, Lin,Ai, Pengfei,Gu, Jianming,Jie, Suyun,Li, Bo-Geng

, p. 55 - 61 (2012/11/07)

A series of cobalt complexes bearing N-containing diphosphine PNP ligands has been synthesized and characterized. The nature of the ligand structure affects the binding of the ligand to the cobalt center and determines the coordination geometry of the cobalt complexes. All the complexes have been employed to catalyze the polymerization of 1,3-butadiene, in combination with methylaluminoxane (MAO) or ethylaluminum sesquichloride (EASC) as the cocatalyst. Both the nature of the ligand and the type of cocatalyst had a remarkable influence on the polymerization activity, microstructure and molecular weight of the resulting polymers. The [Co]/MAO catalytic systems resulted in relatively lower conversions of butadiene and cis-1,4 contents in the polymers than the corresponding [Co]/EASC catalytic systems. Upon activation with EASC, the polymerization behaviors of the catalytic systems were also affected by the reaction parameters.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 66534-97-2