Welcome to LookChem.com Sign In|Join Free

CAS

  • or

7250-68-2

Post Buying Request

7250-68-2 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

7250-68-2 Usage

General Description

4,4'-Azodibenzoic Acid Diethyl Ester is a chemical compound known primarily for its use in the synthesis of other complex organic compounds. This indicates its relevance within a laboratory or industrial setting, while its precise formula is C20H18N2O4. Its molecular weight is 350.37 g/mol. Its physical characteristics can include a solid, crystalline form at room temperature. The key functional groups in its structure are the ester groups and an azo group, which contain nitrogen. Safety measures should be taken when handling this compound as limited data is available about its potential hazards.

Check Digit Verification of cas no

The CAS Registry Mumber 7250-68-2 includes 7 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 4 digits, 7,2,5 and 0 respectively; the second part has 2 digits, 6 and 8 respectively.
Calculate Digit Verification of CAS Registry Number 7250-68:
(6*7)+(5*2)+(4*5)+(3*0)+(2*6)+(1*8)=92
92 % 10 = 2
So 7250-68-2 is a valid CAS Registry Number.

7250-68-2SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 12, 2017

Revision Date: Aug 12, 2017

1.Identification

1.1 GHS Product identifier

Product name Diethyl 4,4'-Azodibenzoate

1.2 Other means of identification

Product number -
Other names ethyl 4-[(4-ethoxycarbonylphenyl)diazenyl]benzoate

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:7250-68-2 SDS

7250-68-2Relevant articles and documents

Oxidative dehydrogenation of hydrazines and diarylamines using a polyoxomolybdate-based iron catalyst

Huang, Lei,Qiu, Shiqin,Wei, Yongge,Xie, Jingyan,Yu, Han,Zeng, Xianghua,Zhao, Weizhe

supporting information, p. 7677 - 7680 (2021/08/09)

We report an efficient method for the oxidative dehydrogenation of hydrazines and diarylamines in aqueous ethanol using Anderson-type polyoxomolybdate-based iron(iii) as a catalyst and hydrogen peroxide as an oxidant. A series of azo compounds and tetraarylhydrazines were obtained in moderate to excellent yields. The reaction conditions and substrate scopes are complementary or superior to those of more established protocols. In addition, the catalyst shows good stability and reusability in water. The preliminary mechanistic studies suggest that a radical process is involved in the reaction.

Anion recognition in aqueous solution by cyclic dinuclear square cage-shaped coordination complexes

Fu, Cai-Ye,Li, Yu-Qian,Chen, Lu,Wang, Yun-Guang,Lin, Li-Rong

supporting information, (2019/07/02)

Three cyclic dinuclear complexes, namely [M2(H2L)2](ClO4)4 [M = Co2+ (1), Ni2+ (2), Zn2+ (3), H2L = (1,2)-bis-N'-(pyridin-2-ylmethylene)benzohydrazide hydrazine, C26H22N8O2], containing amide and hydrazine groups were synthesized and characterized. Each central metal ion is coordinated with two oxygen atoms and four nitrogen atoms from carbonyl, and pyridine and imine, respectively. The metal ion is six-coordinated and has a slightly deformed octahedral geometry. X-ray crystallographic analyses showed that all the three cyclic dinuclear complexes crystallize in the orthorhombic system, and belong to the C222 space group, with two molecules in each unit cell. The cyclic dinuclear molecule is linked by two H2L ligands with a Z-form-HN-NH-bridge, nearly forming a square coordination cage with edges of length around 8.4 ?. The cyclic dinuclear complexes can recognize acetate and fluoride anions in an acetonitrile solution containing 60% volume water. Recognition is governed by electrostatic interactions in cooperation with the cage structure effect with the mechanism of anion displacement reaction. The results show that the recognition of anions in acetonitrile aqueous solution is an exothermic and entropy-reducing reaction. This suggests that the enthalpy change plays an important role in the presence of highly polar water and highlights the importance of positively charged cage structure effect. A color change from light yellow to dark yellow was clearly observed for complex 3 on addition of acetate or fluoride anions in acetonitrile aqueous solution containing 60% water. Complex 3 can be used for colorimetric “naked eye” recognition of acetate or fluoride anions in acetonitrile aqueous solution. Theoretical calculations based on time dependent density functional theory (TD-DFT) show the agreement between the theoretical results and experimental data.

Conversion of anilines into azobenzenes in acetic acid with perborate and Mo(VI): correlation of reactivities

Karunakaran,Venkataramanan

, p. 375 - 385 (2019/02/14)

Azobenzenes are extensively used to dye textiles and leather and by tuning the substituent in the ring, vivid colours are obtained. Here, we report preparation of a large number of azobenzenes in good yield from commercially available anilines using sodium perborate (SPB) and catalytic amount of Na2MoO4 under mild conditions. Glacial acetic acid is the solvent of choice and the aniline to azobenzene conversion is zero, first and first orders with respect to SPB, Na2MoO4 and aniline, respectively. Based on the kinetic orders, UV–visible spectra and cyclic voltammograms, the conversion mechanism has been suggested. The reaction rates of about 50 anilines at 20–50?°C and their energy and entropy of activation conform to the isokinetic or Exner relationship and compensation effect, respectively. However, the reaction rates, deduced by the so far adopted method, fail to comply with the Hammett correlation. The specific reaction rates of molecular anilines, obtained through a modified calculation, conform to the Hammett relationship. Thus, this work presents a convenient inexpensive non-hazardous method of preparation of a larger number of azobenzenes, and shows the requirement of modification in obtaining the true reaction rates of anilines in acetic acid and the validity of Hammett relationship in the conversion process, indicating operation of a common mechanism.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 7250-68-2