Welcome to LookChem.com Sign In|Join Free

CAS

  • or
1-(2-methylphenyl)ethanol, also known as o-cresol, is an organic compound with the chemical formula C8H10O. It is a colorless liquid characterized by a floral odor. 1-(2-methylphenyl)ethanol is recognized for its versatile applications across various industries due to its unique properties.

7287-82-3

Post Buying Request

7287-82-3 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

7287-82-3 Usage

Uses

Used in Fragrance Industry:
1-(2-methylphenyl)ethanol is used as a fragrance ingredient for its distinct floral scent, contributing to the creation of various perfumes and scented products.
Used in Pharmaceutical and Chemical Industries:
1-(2-methylphenyl)ethanol is utilized as a solvent in these industries, leveraging its ability to dissolve a wide range of substances, which is essential for numerous chemical reactions and processes.
Used in Disinfection and Sanitization:
1-(2-methylphenyl)ethanol is employed as a disinfectant and bactericide due to its antiseptic properties, playing a crucial role in maintaining hygiene and preventing the spread of infections.
However, it is important to note that 1-(2-methylphenyl)ethanol is toxic and can cause irritation to the skin, eyes, and respiratory system. Prolonged exposure has also been associated with potential long-term health effects, including liver and kidney damage. Therefore, careful handling and proper safety measures are imperative when working with this chemical.

Check Digit Verification of cas no

The CAS Registry Mumber 7287-82-3 includes 7 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 4 digits, 7,2,8 and 7 respectively; the second part has 2 digits, 8 and 2 respectively.
Calculate Digit Verification of CAS Registry Number 7287-82:
(6*7)+(5*2)+(4*8)+(3*7)+(2*8)+(1*2)=123
123 % 10 = 3
So 7287-82-3 is a valid CAS Registry Number.

7287-82-3 Well-known Company Product Price

  • Brand
  • (Code)Product description
  • CAS number
  • Packaging
  • Price
  • Detail
  • Alfa Aesar

  • (L08065)  1-(2-Methylphenyl)ethanol, 97%   

  • 7287-82-3

  • 5g

  • 554.0CNY

  • Detail
  • Alfa Aesar

  • (L08065)  1-(2-Methylphenyl)ethanol, 97%   

  • 7287-82-3

  • 25g

  • 1305.0CNY

  • Detail

7287-82-3Relevant articles and documents

Origin of the detrimental effect of lithium halides on an enantioselective nucleophilic alkylation of aldehydes

Pate, Franck,Duguet, Nicolas,Oulyadi, Hassan,Harrison-Marchand, Anne,Fressigne, Catherine,Valnot, Jean-Yves,Lasne, Marie-Claire,Maddaluno, Jacques

, p. 6982 - 6991 (2007)

(Chemical Equation Presented) The effect of lithium halides on the enantioselectivity of the addition of methyllithium on o-tolualdehyde, in the presence of chiral lithium amides derived from chiral 3-aminopyrrolidines (3APLi), has been investigated. The enantiomeric excess of the resulting 1-o-tolylethanol was found to drop upon addition of significant amounts of LiCl, introduced before the aldehyde. The competitive affinity between the lithium amide, the methyllithium, and the lithium halides in THF was examined by multinuclear NMR spectroscopy and DFT calculations. The results showed that the original mixed aggregate of the chiral lithium amide and methyllithium is rapidly, totally, and irreversibly replaced by a similar 1:1 complex involving one lithium chloride or bromide and one lithium amide. While the MeLi/LiX substitution occurs with some degree of epimerization at the nitrogen for the endo-MeLi:3APLi complex, it is mostly stereospecific for the exo-type arrangements of the aggregate. The thermodynamic preference for mixed aggregates between 3APLi and LiX was confirmed by static DFT calculations: the data show that the LiCl and LiBr aggregates are more stable than their MeLi counterparts by more than 10 kcal·mol-1 provided THF is explicitly taken into account. These results suggest that a sequestration of the source of chirality by the lithium halides is at the origin of the detrimental effect of these additives on the ee of the model reaction.

Ruthenium(II) supported by phosphine-functionalized N-heterocyclic carbene ligands as catalysts for the transfer hydrogenation of ketones

Humphries, Matthew E.,Pecak, Wiktoria H.,Hohenboken, Sallie A.,Alvarado, Samuel R.,Swenson, Dale C.,Domski, Gregory J.

, p. 138 - 143 (2013)

We have prepared and characterized two ruthenium(II) complexes supported by phosphine-functionalized N-heterocyclic (NHC) ligands. One of the complexes (2a) underwent ortho-metalation of the N-phenyl moiety giving rise to a tridentate PCNHCCsu

Cinchona-Alkaloid-Derived NNP Ligand for Iridium-Catalyzed Asymmetric Hydrogenation of Ketones

Zhang, Lin,Zhang, Ling,Chen, Qian,Li, Linlin,Jiang, Jian,Sun, Hao,Zhao, Chong,Yang, Yuanyong,Li, Chun

supporting information, p. 415 - 419 (2022/01/12)

Most ligands applied for asymmetric hydrogenation are synthesized via multistep reactions with expensive chemical reagents. Herein, a series of novel and easily accessed cinchona-alkaloid-based NNP ligands have been developed in two steps. By combining [Ir(COD)Cl]2, 39 ketones including aromatic, heteroaryl, and alkyl ketones have been hydrogenated, all affording valuable chiral alcohols with 96.0-99.9% ee. A plausible reaction mechanism was discussed by NMR, HRMS, and DFT, and an activating model involving trihydride was verified.

Nickel-Catalyzed Enantioselective Hydroboration of Vinylarenes

Tran, Hai N.,Stanley, Levi M.

supporting information, p. 395 - 399 (2021/12/27)

The enantioselective hydroboration of vinylarenes catalyzed by a chiral, nonracemic nickel catalyst is presented as a facile method for generating chiral benzylic boronate esters. Various vinylarenes react with bis(pinacolato)diboron (B2pin2) in the presence of MeOH as a hydride source to form chiral boronate esters in up to 92% yield with up to 94% ee. The use of anhydrous Me4NF to activate B2pin2 is crucial for ensuring fast transmetalation to achieve high enantioselectivities.

PQXdpap: Helical Poly(quinoxaline-2,3-diyl)s Bearing 4-(Dipropylamino)pyridin-3-yl Pendants as Chirality-Switchable Nucleophilic Catalysts for the Kinetic Resolution of Secondary Alcohols

Murakami, Ryo,Suginome, Michinori,Yamamoto, Takeshi

supporting information, p. 8711 - 8716 (2021/11/24)

Helically chiral poly(quinoxaline-2,3-diyl)s bearing 4-(dipropylamino)pyridin-3-yl pendants at the 5-position of the quinoxaline ring (PQXdpap) exhibited high catalytic activities and moderate to high selectivities (up to s = 87) in the acylative kinetic resolution of secondary alcohols. The solvent-dependent helical chirality switching of PQXdpap between pure toluene and a 1:1 mixture of toluene and 1,1,2-trichloroethane enabled the preparation of either compound of a pair of enantiomerically pure alcohols (>99% ee) from a single catalyst.

Dynamic Kinetic Resolution of Alcohols by Enantioselective Silylation Enabled by Two Orthogonal Transition-Metal Catalysts

Oestreich, Martin,Seliger, Jan

, p. 247 - 251 (2020/10/29)

A nonenzymatic dynamic kinetic resolution of acyclic and cyclic benzylic alcohols is reported. The approach merges rapid transition-metal-catalyzed alcohol racemization and enantioselective Cu-H-catalyzed dehydrogenative Si-O coupling of alcohols and hydrosilanes. The catalytic processes are orthogonal, and the racemization catalyst does not promote any background reactions such as the racemization of the silyl ether and its unselective formation. Often-used ruthenium half-sandwich complexes are not suitable but a bifunctional ruthenium pincer complex perfectly fulfills this purpose. By this, enantioselective silylation of racemic alcohol mixtures is achieved in high yields and with good levels of enantioselection.

Homochiral Dodecanuclear Lanthanide "cage in Cage" for Enantioselective Separation

Zhu, Chengfeng,Tang, Haitong,Yang, Keke,Fang, Yu,Wang, Kun-Yu,Xiao, Zhifeng,Wu, Xiang,Li, Yougui,Powell, Joshua A.,Zhou, Hong-Cai

supporting information, p. 12560 - 12566 (2021/08/23)

It is extremely difficult to anticipate the structure and the stereochemistry of a complex, particularly when the ligand is flexible and the metal node adopts diverse coordination numbers. When trivalent lanthanides (LnIII) and enantiopure amino acid ligands are utilized as building blocks, self-assembly sometimes yields rare chiral polynuclear structures. In this study, an enantiopure carboxyl-functionalized amino acid-based ligand with C3 symmetry reacts with lanthanum cations to give a homochiral porous coordination cage, (Δ/λ)12-PCC-57. The dodecanuclear lanthanide cage has an unprecedented octahedral "cage-in-cage"framework. During the self-assembly, the chirality is transferred from the enantiopure ligand and fixed by the binuclear lanthanide cluster to give 12 metal centers that have either Δor λ homochiral stereochemistry. The cage exhibits excellent enantioselective separation of racemic alcohols, 2,3-dihydroquinazolinones, and multiple commercially available drugs. This finding exhibits a rare example of a multinuclear lanthanide complex with a dual-walled topology and homochirality. The highly ordered self-assembly and self-sorting of flexible amino acids and lanthanides shed light on the chiral transformation between different complicated artificial systems that mimic natural enzymes.

Visible-Light-Driven Catalytic Deracemization of Secondary Alcohols

Hu, Xile,Zhang, Zhikun

supporting information, p. 22833 - 22838 (2021/09/09)

Deracemization of racemic chiral compounds is an attractive approach in asymmetric synthesis, but its development has been hindered by energetic and kinetic challenges. Here we describe a catalytic deracemization method for secondary benzylic alcohols which are important synthetic intermediates and end products for many industries. Driven by visible light only, this method is based on sequential photochemical dehydrogenation followed by enantioselective thermal hydrogenation. The combination of a heterogeneous dehydrogenation photocatalyst and a chiral molecular hydrogenation catalyst is essential to ensure two distinct pathways for the forward and reverse reactions. These reactions convert a large number of racemic aryl alkyl alcohols into their enantiomerically enriched forms in good yields and enantioselectivities.

Effectiveness and Mechanism of the Ene(amido) Group in Activating Iron for the Catalytic Asymmetric Transfer Hydrogenation of Ketones

Xue, Qingquan,Wu, Rongliang,Wang, Di,Zhu, Meifang,Zuo, Weiwei

supporting information, p. 134 - 147 (2021/02/05)

I-interacting ligands of the diphosphino amido-ene(amido) type are effective in activating iron to resemble the properties of precious metals in the catalytic asymmetric transfer hydrogenation of ketones. To further verify the effectiveness of the ene(amido) group, we synthesized four amine(imine) diphosphine iron precatalyst complexes with substituents at α and β positions relative to imino groups (1-3) or with enlarged chelate ring sizes (5,5,6-membered rings) (4). In comparison with the parent trans-(R,R)-[Fe(CO)(Cl)(PPh2CH2CHaNCHPhCHPhNHCH2CH2PPh2)]BF4 (I), the introduction of a methyl group in 1 and 2 reduced the catalytic activity but led to undiminished enantioselectivity as reaction proceeded. In comparison to the iron complexes 1-3 with a 5,5,5-coordination geometry, the complex 4 derived from the new (R,R)-P-NH-NH2 tridentate ligand showed high reactivity comparable to that of I but was unfortunately not enantioselective. The catalytic reactivity of 1, 2, and 4 illustrates the effectiveness of the ene(amido) group. An electronic structure study on the important catalytic intermediate amido-ene(amido) complex 1b proved that iron was activated by an additional I-back-donation-interaction ligand to participate in the traditional metal-ligand bifunctional pathway in the asymmetric transfer hydrogenation reactions.

Manganese catalyzed asymmetric transfer hydrogenation of ketones

Zhang, Guang-Ya,Ruan, Sun-Hong,Li, Yan-Yun,Gao, Jing-Xing

supporting information, p. 1415 - 1418 (2020/11/20)

The asymmetric transfer hydrogenation (ATH) of a wide range of ketones catalyzed by manganese complex as well as chiral PxNy-type ligand under mild conditions was investigated. Using 2-propanol as hydrogen source, various ketones could be enantioselectively hydrogenated by combining cheap, readily available [MnBr(CO)5] with chiral, 22-membered macrocyclic ligand (R,R,R',R')-CyP2N4 (L5) with 2 mol% of catalyst loading, affording highly valuable chiral alcohols with up to 95% ee.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 7287-82-3