Welcome to LookChem.com Sign In|Join Free

CAS

  • or

73058-37-4

Post Buying Request

73058-37-4 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

73058-37-4 Usage

Chemical Properties

Yellow Oil

Uses

N-Pyrazinylcarbonyl-L-phenylalanine Methyl Ester can be used for the synthesis of Bortezomib from L-phenylalanine via dipeptidyl boronic acid ester intermediates.

Check Digit Verification of cas no

The CAS Registry Mumber 73058-37-4 includes 8 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 5 digits, 7,3,0,5 and 8 respectively; the second part has 2 digits, 3 and 7 respectively.
Calculate Digit Verification of CAS Registry Number 73058-37:
(7*7)+(6*3)+(5*0)+(4*5)+(3*8)+(2*3)+(1*7)=124
124 % 10 = 4
So 73058-37-4 is a valid CAS Registry Number.

73058-37-4SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 19, 2017

Revision Date: Aug 19, 2017

1.Identification

1.1 GHS Product identifier

Product name methyl 3-phenyl-2-(pyrazine-2-carbonylamino)propanoate

1.2 Other means of identification

Product number -
Other names N-(pyrazine-2-yl-carbonyl)-L-phenylalanine methylester

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:73058-37-4 SDS

73058-37-4Relevant articles and documents

Stress degradation study of bortezomib: Effect of co-solvent, isolation and characterization of degradation products by UHPLC-Q-TOF-MS/MS and NMR and evaluation of the toxicity of the degradation products

Udutha, Suresh,Borkar, Roshan M.,Shankar,Sony,Jala, Aishwarya,Vamshi Krisna,Kiran Kumar,Misra,Prabhakar,Srinivas

, p. 8178 - 8191 (2021/05/21)

Bortezomib (BTZ) is a first-in-class, potent reversible inhibitor of proteasome used in the treatment of multiple myeloma, the second most common hematological cancer. Stress degradation studies were performed to investigate the inherent stability of the drug according to ICH recommended guidelines Q1A (R2). Stress experiments were carried out in two ways using acetonitrile and methanol as co-solvents under various conditions. A selective stability-indicating LC-MS method has been developed to separate all degradation products of the drug on a Hibar-Purospher STAR, C18 (250 × 4.6 mm, 5 μm) column using a mobile phase consisting of 0.1% formic acid and acetonitrile in the gradient mode. BTZ was found to undergo degradation under acidic, basic, neutral hydrolysis and oxidative conditions, whereas it was stable under other conditions. Thirteen degradation products (DP-1-DP-13) were identified using acetonitrile as a co-solvent. Additionally, three (DP-14-DP-16) degradation products were found where methanol was used as a co-solvent. A total of 16 (DP-1-DP-16) degradation products were characterized by liquid chromatography-tandem mass spectrometry (LC-ESI-Q-TOF/MS/MS) and high-resolution mass spectrometry (HRMS). Major degradation products, DP-3, DP-6, DP-9, DP-10, DP-11 and DP-12, formed under oxidation conditions were isolated using preparative HPLC and characterized by 1D and 2D NMR experiments. Furthermore, in vitro cytotoxicity of isolated DPs was tested on normal cell lines such as CHO-K1, HEK-293 and NRK-49F by MTT assays. This study revealed that they were around 2-6 times less toxic as compared with the standard control of the drug and DP-10 showed relatively more toxicity than other isolated DPs against rat kidney cells at 18.20 μM. In silico toxicity studies suggested that BTZ and its DPs can be hepatotoxic and genotoxic resulting in severe toxicity.

Design and synthesis of tripeptidyl furylketones as selective inhibitors against the β5 subunit of human 20S proteasome

Lü, Zirui,Li, Xiaona,Niu, Yan,Sun, Qi,Wang, Chao,Xi, Dandan,Xu, Fengrong,Xu, Ping,Zhou, Tongliang

, (2020/03/10)

A series of tripeptidic proteasome inhibitors with furylketone as C-terminus were designed and synthesized. Biochemical evaluations against β1, β2 and β5 subunits revealed that they acted selectively on β5 subunit with IC50s against chymotrypsin-like (CT-L) activity in micromolar range. LC-MS/MS analysis of the ligand-20S proteasome mixture showed that the most potent compound 11m (IC50 = 0.18 μM) made no covalent modification on 20S proteasome. However, it was identified acting in a slowly reversible manner in wash-out assay and the reversibility was much lower than that of MG132, suggesting the possibility of these tripeptidic furylketones forming reversible covalent bonds with 20S proteasome. Several compounds were selected for anti-proliferative assay towards multiple cancer cell lines, and compound 11m displayed comparable potency to positive control (MG132) in all cell lines tested. Furthermore, the pharmacokinetic (PK) data in rats indicated 11m behaved similarly (Cmax, 2007 μg/L; AUC0?t, 680 μg/L·h; Vss, 0.66 L/kg) to the clinical used agent carfilzomib. All these data suggest 11m is a good lead compound to be developed to novel anti-tumor agent.

All Non-Carbon B3NO2 Exotic Heterocycles: Synthesis, Dynamics, and Catalysis

Opie, Christopher R.,Noda, Hidetoshi,Shibasaki, Masakatsu,Kumagai, Naoya

supporting information, p. 4648 - 4653 (2019/03/17)

The B3NO2 six-membered heterocycle (1,3-dioxa-5-aza-2,4,6-triborinane=DATB), comprising three different non-carbon period 2 elements, has been recently demonstrated to be a powerful catalyst for dehydrative condensation of carboxylic acids and amines. The tedious synthesis of DATB, however, has significantly diminished its utility as a catalyst, and thus the inherent chemical properties of the ring system have remained virtually unexplored. Here, a general and facile synthetic strategy that harnesses a pyrimidine-containing scaffold for the reliable installation of boron atoms is disclosed, giving rise to a series of Pym-DATBs from inexpensive materials in a modular fashion. The identification of a soluble Pym-DATB derivative allowed for the investigation of the dynamic nature of the B3NO2 ring system, revealing differential ring-closing and -opening behaviors depending on the medium. Readily accessible Pym-DATBs proved their utility as efficient catalysts for dehydrative amidation with broad substrate scope and functional-group tolerance, offering a general and practical catalytic alternative to reagent-driven amidation.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 73058-37-4