Welcome to LookChem.com Sign In|Join Free

CAS

  • or

80721-78-4

Post Buying Request

80721-78-4 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

80721-78-4 Usage

General Description

2,6,9,10-Anthracenetetracarbonitrile is a chemical compound with the molecular formula C16H4N4. It is a highly stable and crystalline organic compound that is widely used in the manufacturing of dyes, pigments, and fluorescent materials. Its unique molecular structure makes it a valuable building block for the synthesis of various organic compounds and is often used as a precursor in the production of functional materials. Additionally, it has been studied for its potential applications in organic light-emitting diodes (OLEDs), organic field-effect transistors (OFETs), and electrochemical devices due to its high thermal and chemical stability. Overall, 2,6,9,10-Anthracenetetracarbonitrile is an important chemical in the field of materials science and organic chemistry.

Check Digit Verification of cas no

The CAS Registry Mumber 80721-78-4 includes 8 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 5 digits, 8,0,7,2 and 1 respectively; the second part has 2 digits, 7 and 8 respectively.
Calculate Digit Verification of CAS Registry Number 80721-78:
(7*8)+(6*0)+(5*7)+(4*2)+(3*1)+(2*7)+(1*8)=124
124 % 10 = 4
So 80721-78-4 is a valid CAS Registry Number.

80721-78-4Relevant articles and documents

Photochemical Electron Transfer Initiated Oxidative Fragmentation of Aminopinacols. Factors Governing Reaction Rates and Quantum Efficiencies of C-C Bond Cleavage

Gan, Hong,Leinhos, Uwe,Gould, Ian R.,Whitten, David G.

, p. 3566 - 3573 (2007/10/02)

The fragmentation reactions of the cation radicals of a series of remote diamine-substituted pinacols have been investigated.The cation radicals were generated upon photooxidation with excited 2,6,9,10-tetracyanoanthracence in acetonitrile.The products are consistent with cleavage of the central C-C bond.The rate constants for fragmentation were determined both from steady-state quantum yield studies and from time-resolved measurements.In general, the rate constants for fragmentation increase with increasing stability of the radical and cation products.However, the results of temperature dependence studies clearly demonstrate that conformational effects play an important role in the transition state.In some cases, these conformational effects can result in changes in the reactivity order expected from purely thermodynamic considerations.

Contact and Solvent-Separated Geminate Radical Ion Pairs in Electron-Transfer Photochemistry

Gould, Ian R.,Young, Ralph H.,Moody, Roger E.,Farid, Samir

, p. 2068 - 2080 (2007/10/02)

The two primary intermediates that play a major role in determining the efficiencies of bimolecular photoinduced electron-transfer reactions are the contact (A.-D.+) and the solvent-separated (A.-(S)D.+) radical ion pairs, CRIP and SSRIP, respectively.These two species are distinguished by differences in electronic coupling, which is much smaller for the SSRIP compared to the CRIP, and solvation, which is much larger for the SSRIP compared to CRIP.The present work addresses the quantitative aspects of these and other factors that influence the rates of energy-wasting return electron transfer within the ion-pair intermediates.The electron acceptor tetracyanoanthracene (TCA) forms ground-state charge-transfer complexes with alkyl-substituted benzene donors.By a change of the excitation wavelength and/or donor concentration, either the free TCA or the CT complex can be excited.Quenching of free lTCA* by the alkylbenzene donors that have low oxidation potentials, such as pentamethylbenzene and hexamethylbenzene, in acetonitrile solution leads to the direct formation of geminate SSRIP.Excitation of the corresponding charge-transfer complexes leads to the formation of geminate CRIP.Rates of return electron transfer within the two types of ion pair are determined from quantum yields for formation of free radical ions together with the CRIP fluorescence decay lifetimes.The rates of return electron transfer within both sets of radical ion pairs depend upon the reaction exothermicity in a manner consistent with the Marcus inverted region.The data are analyzed by using a golden rule model in which the rate is given as a function of an electronic coupling matrix element, reorganization energies for the rearranged high-frequency (skeletal vibration) and low-frequency (mainly solvent and libration) motions, and an averaged frequency for the skeletal modes.Estimates for the reorganization energies and the skeletal frequency for the CRIP are obtained independently by analysis of the spectral distribution of the CRIP (exciplex) emission spectrum.A good fit to the return electron-transfer rate data for the CRIP is obtained by using the values for these parameters obtained from the emission spectrum.It is found that the electronic coupling in the CRIP is ca. 2 orders of magnitude higher than in the SSRIP and that the intermolecular (mainly solvent) reorganization energy for the contact pair is ca. 1 eV lower than that of the solvent-separated pair.The relevance of these observations to the photophysical and photochemical properties of contact radical ion pairs is discussed.

Specific Deuterium Isotope Effects on the Rates of Electron Transfer within Geminate Radical-Ion Pairs

Gould, Ian R.,Farid, Samir

, p. 7883 - 7885 (2007/10/02)

-

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 80721-78-4