Welcome to LookChem.com Sign In|Join Free

CAS

  • or

826-45-9

Post Buying Request

826-45-9 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

826-45-9 Usage

General Description

Bicyclo[2.2.2]octane-1,4-dimethanol is a chemical compound with the molecular formula C10H18O2. It is structured as two methanol groups attached to a bicyclo[2.2.2]octane ring system. This ring system is formed of three connected cyclohexane rings sharing two carbon atoms, creating a rigid structure. The compound is a member of the class of compounds known as dialkylglycerols. These are glycerol derivatives that contain two alkyl chains attached to the glycerol moiety through ether linkages. It is not widely studied, so its toxicity and industrial applications are not well-documented.

Check Digit Verification of cas no

The CAS Registry Mumber 826-45-9 includes 6 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 3 digits, 8,2 and 6 respectively; the second part has 2 digits, 4 and 5 respectively.
Calculate Digit Verification of CAS Registry Number 826-45:
(5*8)+(4*2)+(3*6)+(2*4)+(1*5)=79
79 % 10 = 9
So 826-45-9 is a valid CAS Registry Number.

826-45-9SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 12, 2017

Revision Date: Aug 12, 2017

1.Identification

1.1 GHS Product identifier

Product name [4-(hydroxymethyl)-1-bicyclo[2.2.2]octanyl]methanol

1.2 Other means of identification

Product number -
Other names 1,4-Dihydroxymethyl-bicyclo-<2.2.2>-octan

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:826-45-9 SDS

826-45-9Relevant articles and documents

Bis-quaternary ammonium compounds: derivatives and congeners of bicyclo(2.2.2)octane.

Cannon,Yang,Rodriguez,Buckley

, p. 1534 - 1537 (1971)

-

Novel vitamin D receptor ligands bearing a spherical hydrophobic core structure-Comparison of bicyclic hydrocarbon derivatives with boron cluster derivatives

Wongmayura, Angsuma,Fujii, Shinya,Ito, Shigeru,Kano, Atsushi,Taoda, Yoshiyuki,Kawachi, Emiko,Kagechika, Hiroyuki,Tanatani, Aya

supporting information; experimental part, p. 1756 - 1760 (2012/04/04)

Vitamin D receptor (VDR) is a nuclear receptor for 1a,25-dihydroxyvitamin D3 (1a,25(OH)2D3), and is an attractive target for multiple clinical applications. We recently developed novel non-secosteroidal VDR ligands bearing a hydrophobic p-carborane cage,

Ultra-fast rotors for molecular machines and functional materials via halogen bonding: Crystals of 1,4-bis(iodoethynyl)bicyclo[2.2.2]octane with distinct gigahertz rotation at two sites

Lemouchi, Cyprien,Vogelsberg, Cortnie S.,Zorina, Leokadiya,Simonov, Sergey,Batail, Patrick,Brown, Stuart,Garcia-Garibay, Miguel A.

scheme or table, p. 6371 - 6379 (2011/06/19)

As a point of entry to investigate the potential of halogen-bonding interactions in the construction of functional materials and crystalline molecular machines, samples of 1,4-bis(iodoethynyl)bicyclo[2.2.2]octane (BIBCO) were synthesized and crystallized. Knowing that halogen-bonding interactions are common between electron-rich acetylenic carbons and electron-deficient iodines, it was expected that the BIBCO rotors would be an ideal platform to investigate the formation of a crystalline array of molecular rotors. Variable temperature single crystal X-ray crystallography established the presence of a halogen-bonded network, characterized by lamellarly ordered layers of crystallographically unique BIBCO rotors, which undergo a reversible monoclinic-to-triclinic phase transition at 110 K. In order to elucidate the rotational frequencies and the activation parameters of the BIBCO molecular rotors, variable-temperature 1H wide-line and 13C cross-polarization/magic-angle spinning solid-state NMR experiments were performed at temperatures between 27 and 290 K. Analysis of the 1H spin-lattice relaxation and second moment as a function of temperature revealed two dynamic processes simultaneously present over the entire temperature range studied, with temperature-dependent rotational rates of krot = 5.21 × 1010 s-1·exp(-1.48 kcal·mol -1/RT) and krot= 8.00 × 1010 s -1·exp(-2.75 kcal·mol-1/RT). Impressively, these correspond to room temperature rotational rates of 4.3 and 0.8 GHz, respectively. Notably, the high-temperature plastic crystalline phase I of bicyclo[2.2.2]octane has a reported activation energy of 1.84 kcal·mol-1 for rotation about the 1,4 axis, which is 24% larger than Ea = 1.48 kcal·mol-1 for the same rotational motion of the fastest BIBCO rotor; yet, the BIBCO rotor has three fewer degrees of translational freedom and two fewer degrees of rotational freedom! Even more so, these rates represent some of the fastest engineered molecular machines, to date. The results of this study highlight the potential of halogen bonding as a valuable construction tool for the design and the synthesis of amphidynamic artificial molecular machines and suggest the potential of modulating properties that depend on the dielectric behavior of crystalline media.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 826-45-9