838-95-9Relevant articles and documents
Palladium supported aminobenzamide modified silica coated superparamagnetic iron oxide as an applicable nanocatalyst for Heck cross-coupling reaction
Fatahi, Yousef,Ghaempanah, Aram,Ma?mani, Leila,Mahdavi, Mohammad,Bahadorikhalili, Saeed
, (2021/01/26)
An applicable palladium-based nanocatalyst was constructed through the immobilization of palladium onto 2-aminobenzamide functionalized silica coated superparamagnetic iron oxide magnetic nanoparticles. The nanocatalyst (named as Pd@ABA@SPIONs@SiO2) was characterized by several characterization methods, including scanning electron microscope (SEM), transmission electron microscopy (TEM), vibrating-sample magnetometry (VSM), energy-dispersive X-ray spectroscopy (EDS), dynamic light scattering (DLS), X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), inductively coupled plasma (ICP), and X-ray photoelectron spectroscopy (XPS) analyses. Microscopy results showed that the nanoparticles are spherical in shape with 20–25 nm size. The size of the nanoparticles was confirmed by the DLS method. The superparamagnetic nature of the catalyst was confirmed by the VSM method. The successful functionalization of SPIONs@SiO2 was confirmed by FT-IR spectroscopy. The presence of palladium in the structure of the nanocatalyst was illustrated by XRD and EDS analysis. Also using XPS technique, the oxidation state of palladium in Pd@ABA@SPIONs@SiO2 was determined zero before and after the catalyst was applied in Mizoroki-Heck reaction. Several aryl halides and alkenes were reacted in the presence of the nanocatalyst and formed the corresponding products in high isolated yields. The nanocatalyst showed very good reusability and did not decrease its activity after 10 sequential runs. Density functional theory (DFT) calculation was performed to provide a mechanism for the reaction and confirmed the role of the palladium catalyst in the reaction function.
A Bidentate Ru(II)-NC Complex as a Catalyst for Semihydrogenation of Alkynes to (E)-Alkenes with Ethanol
Chen, Dafa,Gong, Dawei,Hu, Bowen,Kong, Degong,Xia, Haiping,Yang, Weiwei
, (2020/03/19)
Four Ru(II)-NC complexes were tested as catalysts for semihydrogenation of internal alkynes to (E)-alkenes with ethanol, and the complex {(C5H4N)(C6H4)}RuCl(CO)(PPh3)2 (1a) showed the highest activity. The reactions proceeded well with 1 mol % catalyst loading and 0.1 equiv of t-BuONa at 110 °C for 1 h, and 32 alkenes were synthesized with excellent E:Z selectivity. This is the first ruthenium-catalyzed semihydrogenation of internal alkynes to (E)-alkenes using ethanol as the hydrogen donor.
Stereo-controlledanti-hydromagnesiation of aryl alkynes by magnesium hydrides
Chiba, Shunsuke,Li, Yihang,Ong, Derek Yiren,Pang, Jia Hao,Takita, Ryo,Wang, Bin,Watanabe, Kohei
, p. 5267 - 5272 (2020/06/04)
A concise protocol foranti-hydromagnesiation of aryl alkynes was established using 1?:?1 molar combination of sodium hydride (NaH) and magnesium iodide (MgI2) without the aid of any transition metal catalysts. The resulting alkenylmagnesium intermediates could be trapped with a series of electrophiles, thus providing facile accesses to stereochemically well-defined functionalized alkenes. Mechanistic studies by experimental and theoretical approaches imply that polar hydride addition from magnesium hydride (MgH2) is responsible for the process.
Reductive Difunctionalization of Aryl Alkenes with Sodium Metal and Reduction-Resistant Alkoxy-Substituted Electrophiles
Fukazawa, Mizuki,Nogi, Keisuke,Sasamori, Takahiro,Takahashi, Fumiya,Yorimitsu, Hideki
supporting information, (2020/03/13)
A general method for alkali-metal-promoted reductive difunctionalization of alkenes has been developed by means of reduction-resistant alkoxy-substituted electrophiles. A series of 1,2-diboration and 1,2-dicarbofunctionalization products can be synthesize
Stereocontrolled synthesis of (E)-stilbene derivatives by palladium-catalyzed Suzuki-Miyaura cross-coupling reaction
Rau, Hailee H.,Werner, Nathan S.
, p. 2693 - 2696 (2018/04/30)
A general procedure for the stereocontrolled synthesis of (E)-stilbene derivatives by palladium-catalyzed Suzuki-Miyaura cross-coupling reaction of (E)-2-phenylethenylboronic acid pinacol ester with aryl bromides was investigated. (E)-2-Phenylethenylboronic acid pinacol ester was prepared by 9-BBN-catalyzed hydroboration of phenylacetylene with pinacolborane. This reagent undergoes facile palladium-catalyzed cross-coupling with a diverse set of aryl bromides to provide the corresponding (E)-stilbene derivatives in moderate to good yield. The use of the sterically bulky t-Bu3PHBF4 ligand was crucial to the successful coupling of electron-rich and electron-poor aryl bromides. Complete stereochemical retention of the (E)-2-phenylethenylboronic acid pinacol ester alkene geometry was observed in all of the (E)-stilbene derivatives synthesized.
Palladium-Catalyzed Reductive Coupling Reaction of Terminal Alkynes with Aryl Iodides Utilizing Hafnocene Difluoride as a Hafnium Hydride Precursor Leading to trans-Alkenes
Takahashi, Keita,Ogiwara, Yohei,Sakai, Norio
supporting information, p. 809 - 814 (2018/03/13)
Herein, we describe a reductive cross-coupling of alkynes and aryl iodides by using a novel catalytic system composed of a catalytic amount of palladium dichloride and a promoter precursor, hafnocene difluoride (Cp2HfF2, Cp=cyclopentadienyl anion), in the presence of a mild reducing reagent, a hydrosilane, leading to a one-pot preparation of trans-alkenes. In this process, a series of coupling reactions efficiently proceeds through the following three steps: (i) an initial formation of hafnocene hydride from hafnocene difluoride and the hydrosilane, (ii) a subsequent hydrohafnation toward alkynes, and (iii) a final transmetalation of the alkenyl hafnium species to a palladium complex. This reductive coupling could be chemoselectively applied to the preparation of trans-alkenes with various functional groups, such as an alkyl group, a halogen, an ester, a nitro group, a heterocycle, a boronic ester, and an internal alkyne.
Development of a Palladium-Catalyzed Process for the Synthesis of Z-Alkenes by Sequential Sonogashira–Hydrogenation Reaction
Hancker, S?ren,Neumann, Helfried,Beller, Matthias
supporting information, p. 5253 - 5259 (2018/09/14)
A novel and selective sequential one-pot protocol for the synthesis of Z-alkenes via Sonogashira–semihydrogenation is reported. The efficiency of the methodology is increased by utilizing PdCl2/BuPAd2 as homogeneous catalyst for the Sonogashira coupling and subsequently transforming the transition metal complex into a heterogeneous Pd hydrogenation catalyst. This methodology represents one of the rare examples directly combining homogeneous and heterogeneous catalysis.
Nickel-Catalyzed system for the cross-coupling of alkenyl methyl ethers with grignard reagents under mild conditions
Hostier, Thomas,Neouchy, Zeina,Ferey, Vincent,Gomez Pardo, Domingo,Cossy, Janine
supporting information, p. 1815 - 1818 (2018/04/14)
A nickel-catalyzed cross-coupling of alkenyl methyl ethers with Grignard reagents, under mild conditions, is described. These conditions allowed access to various stilbenes and heterocyclic stilbenic derivatives as well as to a potential anticancer agent DMU-212.
Expedient Synthesis of N-Methyl- and N-Alkylamines by Reductive Amination using Reusable Cobalt Oxide Nanoparticles
Senthamarai, Thirusangumurugan,Murugesan, Kathiravan,Natte, Kishore,Kalevaru, Narayana V.,Neumann, Helfried,Kamer, Paul C. J.,Jagadeesh, Rajenahally V.
, p. 1235 - 1240 (2018/02/09)
N-Methyl- and N-alkylamines represent important fine and bulk chemicals that are extensively used in both academic research and industrial production. Notably, these structural motifs are found in a large number of life-science molecules and play vital roles in regulating their activities. Therefore, the development of convenient and cost-effective methods for the synthesis and functionalization of amines by using earth-abundant metal-based catalysts is of scientific interest. In this regard, herein we report an expedient reductive amination process for the selective synthesis of N-methylated and N-alkylated amines by using nitrogen-doped, graphene-activated nanoscale Co3O4-based catalysts. Starting from inexpensive and easily accessible nitroarenes or amines and aqueous formaldehyde or aldehydes in the presence of formic acid, this cost-efficient reductive amination protocol allows the synthesis of various N-methyl- and N-alkylamines, amino acid derivatives, and existing drug molecules.
Oxidative heck reaction as a tool for para-selective olefination of aniline: A DFT supported mechanism
Moghaddam, Firouz Matloubi,Pourkaveh, Raheleh,Karimi, Ashkan
, p. 10635 - 10640 (2018/05/31)
This study describes the first para-selective palladium-catalyzed alkenylation of tertiary amines. This regioselective C-H activation was conducted without any chelation moieties. A series of olefins were reacted under mild reaction conditions at 60 °C, and the corresponding products were obtained in good yields with high selectivity.