Welcome to LookChem.com Sign In|Join Free

CAS

  • or

84-21-9

Post Buying Request

84-21-9 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

84-21-9 Usage

Uses

Adenosine 3′-monophosphate (3′-AMP) is a metabolite produced from hydrolysis of 2′,3′-cAMP by a family of metal-dependent phosphodiesterases. 3′-AMP inhibits proliferation of preglomerular vascular smooth muscle cells and glomerular mesangial cells via A2B receptors. 2′,3′-cAMP and 3′-AMP represent a new unexplored pathway for adenosine-based cell regulation.

Purification Methods

It crystallises from large volumes of H2O in needles as the monohydrate, but is not very soluble in boiling H2O. Under acidic conditions it forms an equilibrium mixture of 2' and 3' adenylic acids via the 2',3'-cyclic phosphate. When heated with 20% HCl, it gives a quantitative yield of furfural after 3hours, unlike 5'-adenylic acid which only gives traces of furfural. The yellow monoacridine salt has m 175o(dec), and the diacridine salt has m 177o (225o)(dec). [Brown & Todd J Chem Soc 44 1952, Takaku et al. Chem Pharm Bull Jpn 21 1844 1973, NMR: Ts'O et al. Biochemistry 8 997 1969, Beilstein 26 III/IV 3607.]

Check Digit Verification of cas no

The CAS Registry Mumber 84-21-9 includes 5 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 2 digits, 8 and 4 respectively; the second part has 2 digits, 2 and 1 respectively.
Calculate Digit Verification of CAS Registry Number 84-21:
(4*8)+(3*4)+(2*2)+(1*1)=49
49 % 10 = 9
So 84-21-9 is a valid CAS Registry Number.

84-21-9SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 17, 2017

Revision Date: Aug 17, 2017

1.Identification

1.1 GHS Product identifier

Product name 3'-AMP

1.2 Other means of identification

Product number -
Other names A-3'-MP

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:84-21-9 SDS

84-21-9Relevant articles and documents

A Stark Contrast to Modern Earth: Phosphate Mineral Transformation and Nucleoside Phosphorylation in an Iron- and Cyanide-Rich Early Earth Scenario

Burcar, Bradley,Casta?eda, Alma,Lago, Jennifer,Daniel, Mischael,Pasek, Matthew A.,Hud, Nicholas V.,Orlando, Thomas M.,Menor-Salván, César

, p. 16981 - 16987 (2019/11/11)

Organophosphates were likely an important class of prebiotic molecules. However, their presence on the early Earth is strongly debated because the low availability of phosphate, which is generally assumed to have been sequestered in insoluble calcium and iron minerals, is widely viewed as a major barrier to organophosphate generation. Herein, we demonstrate that cyanide (an essential prebiotic precursor) and urea-based solvents could promote nucleoside phosphorylation by transforming insoluble phosphate minerals in a “warm little pond” scenario into more soluble and reactive species. Our results suggest that cyanide and its derivatives (metal cyanide complexes, urea, ammonium formate, and formamide) were key reagents for the participation of phosphorus in chemical evolution. These results allow us to propose a holistic scenario in which an evaporitic environment could concentrate abiotically formed organics and transform the underlying minerals, allowing significant organic phosphorylation under plausible prebiotic conditions.

Natural occurrence of 2′,5′-linked heteronucleotides in marine sponges

Lopp, Annika,Reintamm, Tonu,Kuusksalu, Anne,Tammiste, Indrek,Pihlak, Arno,Kelve, Merike

experimental part, p. 235 - 254 (2010/10/19)

2′,5′-oligoadenylate synthetases (OAS) as a component of mammalian interferon-induced antiviral enzymatic system catalyze the oligomerization of cellular ATP into 2′,5′-linked oligoadenylates (2-5A). Though vertebrate OASs have been characterized as 2′-nucleotidyl transferases under in vitro conditions, the natural occurrence of 2′,5′-oligonucleotides other than 2-5A has never been demonstrated. Here we have demonstrated that OASs from the marine sponges Thenea muricata and Chondrilla nucula are able to catalyze in vivo synthesis of 2-5A as well as the synthesis of a series 2′,5′-linked heteronucleotides which accompanied high levels of 2′,5′-diadenylates. In dephosphorylated perchloric acid extracts of the sponges, these heteronucleotides were identified as A2′p5′G, A2′p5′U, A2′p5′C, G2′p5′A and G2′p5′U. The natural occurrence of 2′-adenylated NAD+ was also detected. In vitro assays demonstrated that besides ATP, GTP was a good substrate for the sponge OAS, especially for OAS from C. nucula. Pyrimidine nucleotides UTP and CTP were also used as substrates for oligomerization, giving 2′,5′-linked homo-oligomers. These data refer to the substrate specificity of sponge OASs that is remarkably different from that of vertebrate OASs. Further studies of OASs from sponges may help to elucidate evolutionary and functional aspects of OASs as proteins of the nucleotidyltransferase family.

Dinuclear Zn2+ complexes in the hydrolysis of the phosphodiester linkage in a diribonucleoside monophosphate diester.

Yashiro, Morio,Kaneiwa, Hideki,Onaka, Kenichi,Komiyama, Makoto

, p. 605 - 610 (2007/10/03)

Dizinc complexes that were formed from 2:1 mixtures of Zn(NO3)2 and dinucleating ligands TPHP (1), TPmX (2) or TPpX (3) in aqueous solutions efficiently hydrolyzed diribonucleoside monophosphate diesters (NpN) under mild conditions. The dinucleating ligand affected the structure of the aquo-hydroxo-dizinc core, resulting in different characteristics in the catalytic activities towards NpN cleavage. The pH-rate profile of ApA cleavage in the presence of (Zn2+)(2)-1 was sigmoidal, whereas those of (Zn2+)(2)-2 and (Zn2+)(2)-3 were bell-shaped. The pH titration study indicated that (Zn2+)(2)-1 dissociates only one aquo proton (up to pH 12), whereas (Zn2+)(2)-2 dissociates three aquo protons (up to pH 10.7). The observed differences in the pH-rate profile are attributable to the various distributions of the monohydroxo-dizinc species, which are responsible for NpN cleavage. As compared to that using (Zn2+)(2)-1, the NpN cleavage using (Zn2+)(2)-2 showed a greater rate constant, with a higher product ratio of 3'-NMP/2'-NMP. The saturation behaviors of the rate, with regard to the concentration of NpN, were analyzed by Michaelis-Menten type kinetics. Although the binding of (Zn2+)(2)-2 to ApA was weaker than that of (Zn2+)(2)-1, (Zn2+)(2)-2 showed a greater kcat value than (Zn2+)(2)-1, resulting in higher ApA cleavage activity of the former.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 84-21-9