Welcome to LookChem.com Sign In|Join Free

CAS

  • or

84365-04-8

Post Buying Request

84365-04-8 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

84365-04-8 Usage

Uses

2'',?3''-?O-?(1-?Methylethylidene)?-?5''-?thio-?adenosine 5''-?Acetate is an intermediate in synthesizing Decarboxylated S-Adenosylmethionine Sulfate Salt (D222000), a substrate that is involved in the biosynthesis of polyamines including spermidine, spermine, and thermospermine.

Check Digit Verification of cas no

The CAS Registry Mumber 84365-04-8 includes 8 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 5 digits, 8,4,3,6 and 5 respectively; the second part has 2 digits, 0 and 4 respectively.
Calculate Digit Verification of CAS Registry Number 84365-04:
(7*8)+(6*4)+(5*3)+(4*6)+(3*5)+(2*0)+(1*4)=138
138 % 10 = 8
So 84365-04-8 is a valid CAS Registry Number.

84365-04-8SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 18, 2017

Revision Date: Aug 18, 2017

1.Identification

1.1 GHS Product identifier

Product name 5'-acetylthio-5'-deoxy-2',3'-O-isopropylidene adenosine

1.2 Other means of identification

Product number -
Other names 5'-deoxy-5'-acetylthio-2',3'-O-isopropylideneadenosine

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:84365-04-8 SDS

84365-04-8Relevant articles and documents

Synthesis, mechanism of action, and antiviral activity of a new series of covalent mechanism-based inhibitors of S-adenosyl-L-homocysteine hydrolase

Guillerm,Guillerm,Vandenplas-Witkowki,Rogniaux,Carte,Leize,Van Dorsselaer,De Clercq,Lambert

, p. 2743 - 2752 (2001)

A direct method for the preparation of 5′-S-alkynyl-5′-thioadenosine and 5′-S-allenyl-5′thioadenosine has been developed. Treatment of a protected 5′-acetylthio-5′-deoxyadenosine with sodium methoxide and propargyl bromide followed by deprotection gave th

Potent SARS-CoV-2 mRNA Cap Methyltransferase Inhibitors by Bioisosteric Replacement of Methionine in SAM Cosubstrate

Bobi?eva, Olga,Bobrovs, Raitis,Ka?epe, Iveta,Patetko, Liene,Kalni??, Gints,?i?ovs, Mihails,Bula, Anna L.,Grī Nberga, Solveiga,Borodu??is, Mā Rti??,Ramata-Stunda, Anna,Rostoks, Nils,Jirgensons, Aigars,Tā Rs, Kaspars,Jaudzems, Kristaps

supporting information, p. 1102 - 1107 (2021/06/30)

Viral mRNA cap methyltransferases (MTases) are emerging targets for the development of broad-spectrum antiviral agents. In this work, we designed potential SARS-CoV-2 MTase Nsp14 and Nsp16 inhibitors by using bioisosteric substitution of the sulfonium and amino acid substructures of the cosubstrate S-adenosylmethionine (SAM), which serves as the methyl donor in the enzymatic reaction. The synthetically accessible target structures were prioritized using molecular docking. Testing of the inhibitory activity of the synthesized compounds showed nanomolar to submicromolar IC50 values for five compounds. To evaluate selectivity, enzymatic inhibition of the human glycine N-methyltransferase involved in cellular SAM/SAH ratio regulation was also determined, which indicated that the discovered compounds are nonselective inhibitors of the studied MTases with slight selectivity for Nsp16. No cytotoxic effects were observed; however, this is most likely a result of the poor cell permeability of all evaluated compounds.

Sulfonium-Based Homolytic Substitution Observed for the Radical SAM Enzyme HemN

Deng, Zixin,Ding, Wei,Ji, Wenjuan,Ji, Xinjian,Mandalapu, Dhanaraju,Sun, Peng,Zhang, Qi

supporting information, p. 8880 - 8884 (2020/04/01)

Sulfur-based homolytic substitution (SH reaction) plays an important role in synthetic chemistry, yet whether such a reaction could occur on the positively charged sulfonium compounds remains unknown. In the study of the anaerobic coproporphyrinogen III oxidase HemN, a radical S-adenosyl-l-methionine (SAM) enzyme involved in heme biosynthesis, we observed the production of di-(5′-deoxyadenosyl)methylsulfonium, which supports a deoxyadenosyl (dAdo) radical-mediated SH reaction on the sulfonium center of SAM. The sulfonium-based SH reactions were then investigated in detail by density functional theory calculations and model reactions, which showed that this type of reactions is thermodynamically favorable and kinetically competent. These findings represent the first report of sulfonium-based SH reactions, which could be useful in synthetic chemistry. Our study also demonstrates the remarkable catalytic promiscuity of the radical SAM superfamily enzymes.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 84365-04-8