Welcome to LookChem.com Sign In|Join Free

CAS

  • or

87-69-4

Post Buying Request

87-69-4 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

87-69-4 Usage

Chemical Properties

Different sources of media describe the Chemical Properties of 87-69-4 differently. You can refer to the following data:
1. white crystals
2. Tartaric acid occurs as colorless monoclinic crystals, or a white or almost white crystalline powder. It is odorless, with an extremely tart taste.

Uses

Different sources of media describe the Uses of 87-69-4 differently. You can refer to the following data:
1. L-(+)-Tartaric Acid is a naturally occurring chemical compound found in berries, grapes and various wines. It provides antioxidant properties and contributes to the sour taste within these products.
2. In the soft drink industry, confectionery products, bakery products, gelatin desserts, as an acidulant. In photography, tanning, ceramics, manufacture of tartrates. The common commercial esters are the diethyl and dibutyl derivatives used for lacquers and in textile printing. Pharmaceutic aid (buffering agent).
3. L-(+)-Tartaric acid is widely utilized in pharmaceutical industries. It is used in soft drinks, confectionaries, food products, gelatin desserts and as a buffering agent. It forms a compound, TiCl2(O-i-Pr)2 with Diels-Alder catalyst and acta as a chelate agent in metal industries. Owing to its efficient chelating property towards metal ions, it is used in farming and metal industries for complexing micronutrients and for cleaning metal surfaces, respectively.

Definition

ChEBI: A tetraric acid that is butanedioic acid substituted by hydroxy groups at positions 2 and 3.

Production Methods

Tartaric acid occurs naturally in many fruits as the free acid or in combination with calcium, magnesium, and potassium. Commercially, L-(+)-tartaric acid is manufactured from potassium tartrate (cream of tartar), a by-product of wine making. Potassium tartrate is treated with hydrochloric acid, followed by the addition of a calcium salt to produce insoluble calcium tartrate. This precipitate is then removed by filtration and reacted with 70% sulfuric acid to yield tartaric acid and calcium sulfate.

General Description

Tartaric Acid belongs to the group of carboxylic acids, and is abundantly found in grapes and wine. It is widely used in drugs, food, and beverage industry.

Flammability and Explosibility

Notclassified

Pharmaceutical Applications

Tartaric acid is used in beverages, confectionery, food products, and pharmaceutical formulations as an acidulant. It may also be used as a sequestering agent and as an antioxidant synergist. In pharmaceutical formulations, it is widely used in combination with bicarbonates, as the acid component of effervescent granules, powders, and tablets. Tartaric acid is also used to form molecular compounds (salts and cocrystals) with active pharmaceutical ingredients to improve physicochemical properties such as dissolution rate and solubility.

Biochem/physiol Actions

L-(+)-Tartaric acid serves as a donor ligand for biological processes. It is used as a food additive in candies and soft drinks to impart a sour taste.

Safety Profile

Moderately toxic by intravenous route. Mildly toxic by ingestion. Reaction with silver produces the unstable silver tartrate. When heated to decomposition it emits acrid smoke and irritating fumes.

Safety

Tartaric acid is widely used in food products and oral, topical, and parenteral pharmaceutical formulations. It is generally regarded as a nontoxic and nonirritant material; however, strong tartaric acid solutions are mildly irritant and if ingested undiluted may cause gastroenteritis. An acceptable daily intake for L-(+)-tartaric acid has not been set by the WHO, although an acceptable daily intake of up to 30 mg/kg body-weight for monosodium L-(+)-tartrate has been established. LD50 (mouse, IV): 0.49 g/kg

storage

The bulk material is stable and should be stored in a well-closed container in a cool, dry place.

Incompatibilities

Tartaric acid is incompatible with silver and reacts with metal carbonates and bicarbonates (a property exploited in effervescent preparations).

Regulatory Status

GRAS listed. Accepted for use as a food additive in Europe. Included in the FDA Inactive Ingredients Database (IM and IV injections; oral solutions, syrups and tablets; sublingual tablets; topical films; rectal and vaginal preparations). Included in nonparenteral medicines licensed in the UK. Included in the Canadian List of Acceptable Non-medicinal Ingredients.

Check Digit Verification of cas no

The CAS Registry Mumber 87-69-4 includes 5 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 2 digits, 8 and 7 respectively; the second part has 2 digits, 6 and 9 respectively.
Calculate Digit Verification of CAS Registry Number 87-69:
(4*8)+(3*7)+(2*6)+(1*9)=74
74 % 10 = 4
So 87-69-4 is a valid CAS Registry Number.
InChI:InChI=1/C4H6O6/c5-1(3(7)8)2(6)4(9)10/h1-2,5-6H,(H,7,8)(H,9,10)/p-2/t1-,2+

87-69-4 Well-known Company Product Price

  • Brand
  • (Code)Product description
  • CAS number
  • Packaging
  • Price
  • Detail
  • TCI America

  • (T0025)  L-(+)-Tartaric Acid  >99.0%(T)

  • 87-69-4

  • 25g

  • 105.00CNY

  • Detail
  • TCI America

  • (T0025)  L-(+)-Tartaric Acid  >99.0%(T)

  • 87-69-4

  • 500g

  • 310.00CNY

  • Detail
  • Alfa Aesar

  • (A13668)  L-(+)-Tartaric acid, 99%   

  • 87-69-4

  • 100g

  • 162.0CNY

  • Detail
  • Alfa Aesar

  • (A13668)  L-(+)-Tartaric acid, 99%   

  • 87-69-4

  • 500g

  • 306.0CNY

  • Detail
  • Alfa Aesar

  • (A13668)  L-(+)-Tartaric acid, 99%   

  • 87-69-4

  • 2500g

  • 1226.0CNY

  • Detail
  • Alfa Aesar

  • (36405)  L-(+)-Tartaric acid, ACS   

  • 87-69-4

  • 100g

  • 254.0CNY

  • Detail
  • Alfa Aesar

  • (36405)  L-(+)-Tartaric acid, ACS   

  • 87-69-4

  • 500g

  • 827.0CNY

  • Detail
  • Alfa Aesar

  • (36405)  L-(+)-Tartaric acid, ACS   

  • 87-69-4

  • 2kg

  • 1487.0CNY

  • Detail
  • Sigma-Aldrich

  • (PHR1472)  TartaricAcid  pharmaceutical secondary standard; traceable to USP

  • 87-69-4

  • PHR1472-1G

  • 813.27CNY

  • Detail
  • Sigma-Aldrich

  • (251380)  L-(+)-Tartaricacid  ACS reagent, ≥99.5%

  • 87-69-4

  • 251380-5G

  • 273.78CNY

  • Detail
  • Sigma-Aldrich

  • (251380)  L-(+)-Tartaricacid  ACS reagent, ≥99.5%

  • 87-69-4

  • 251380-100G

  • 347.49CNY

  • Detail
  • Sigma-Aldrich

  • (251380)  L-(+)-Tartaricacid  ACS reagent, ≥99.5%

  • 87-69-4

  • 251380-500G

  • 1,070.55CNY

  • Detail

87-69-4SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 9, 2017

Revision Date: Aug 9, 2017

1.Identification

1.1 GHS Product identifier

Product name 2,3-dihydroxybutanedioic acid

1.2 Other means of identification

Product number -
Other names kyselinavinna

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only. Food additives
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:87-69-4 SDS

87-69-4Relevant articles and documents

Efficient Catalysts for the Green Synthesis of Adipic Acid from Biomass

Deng, Weiping,Yan, Longfei,Wang, Binju,Zhang, Qihui,Song, Haiyan,Wang, Shanshan,Zhang, Qinghong,Wang, Ye

supporting information, p. 4712 - 4719 (2021/01/20)

Green synthesis of adipic acid from renewable biomass is a very attractive goal of sustainable chemistry. Herein, we report efficient catalysts for a two-step transformation of cellulose-derived glucose into adipic acid via glucaric acid. Carbon nanotube-supported platinum nanoparticles are found to work efficiently for the oxidation of glucose to glucaric acid. An activated carbon-supported bifunctional catalyst composed of rhenium oxide and palladium is discovered to be powerful for the removal of four hydroxyl groups in glucaric acid, affording adipic acid with a 99 % yield. Rhenium oxide functions for the deoxygenation but is less efficient for four hydroxyl group removal. The co-presence of palladium not only catalyzes the hydrogenation of olefin intermediates but also synergistically facilitates the deoxygenation. This work presents a green route for adipic acid synthesis and offers a bifunctional-catalysis strategy for efficient deoxygenation.

Bimetallic AuPt/TiO2Catalysts for Direct Oxidation of Glucose and Gluconic Acid to Tartaric Acid in the Presence of Molecular O2

Ding, Jie,Jin, Xin,Lai, Linyi,Liu, Mengyuan,Sun, Yu,Wang, Jinyao,Xia, Qi,Yan, Hao,Yang, Chaohe,Zhang, Guangyu,Zhang, Wenxiang

, p. 10932 - 10945 (2020/11/23)

Tartaric acid is an important industrial building block in the food and polymer industry. However, green manufacture of tartaric acid remains a grand challenge in this area. To date, chemical synthesis from nitric acid-facilitated glucose oxidation leads to only a one-pot aqueous-phase oxidation of glucose and gluconic acid using bimetallic AuPt/TiO2 catalysts in the presence of molecular O2, with ~50% yield toward tartaric acid at 110 °C and 2 MPa. Structural characterization and density functional theory (DFT) calculation reveal that the lattice mismatch between fcc Pt and bcc Au induces the formation of twinned boundaries in nanoclusters and Jahn-Teller distortion in an electronic field. Such structural and electronic reconfiguration leads to enhanced σ-activation of the C-H bond competing with π-πelectronic sharing of the C═O bond on the catalyst surface. As a result, both C-H (oxidation) and C-C (decarboxylation) bond cleavage reactions synergistically occur on the surface of bimetallic AuPt/TiO2 catalysts. Therefore, glucose and gluconic acid can be efficiently transformed into tartaric acid in a base-free medium. Lattice distortion-enhanced reconfiguration of the electronic field in Pt-based bimetallic nanocatalysts can be utilized in many other energy and environmental fields for catalyzing synergistic oxidation reactions.

Quantitative Determination of Pt- Catalyzed d -Glucose Oxidation Products Using 2D NMR

Armstrong,Hirayama,Knight,Hutchings

, p. 325 - 335 (2019/01/04)

Quantitative correlative 1H-13C NMR has long been discussed as a potential method for quantifying the components of complex reaction mixtures. Here, we show that quantitative HMBC NMR can be applied to understand the complexity of the catalytic oxidation of glucose to glucaric acid, which is a promising bio-derived precursor to adipic acid, under aqueous aerobic conditions. It is shown through 2D NMR analysis that the product streams of this increasingly studied reaction contain lactone and dilactone derivatives of acid products, including glucaric acid, which are not observable/quantifiable using traditional chromatographic techniques. At 98% glucose conversion, total C6 lactone yield reaches 44%. Furthermore, a study of catalyst stability shows that all Pt catalysts undergo product-mediated chemical leaching. Through catalyst development studies, it is shown that sequestration of leached Pt can be achieved through use of carbon supports.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 87-69-4