Welcome to LookChem.com Sign In|Join Free

CAS

  • or

91840-42-5

Post Buying Request

91840-42-5 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

91840-42-5 Usage

Check Digit Verification of cas no

The CAS Registry Mumber 91840-42-5 includes 8 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 5 digits, 9,1,8,4 and 0 respectively; the second part has 2 digits, 4 and 2 respectively.
Calculate Digit Verification of CAS Registry Number 91840-42:
(7*9)+(6*1)+(5*8)+(4*4)+(3*0)+(2*4)+(1*2)=135
135 % 10 = 5
So 91840-42-5 is a valid CAS Registry Number.

91840-42-5Relevant articles and documents

Hydrogen-bond-assisted transition-metal-free catalytic transformation of amides to esters

Huang, Changyu,Li, Jinpeng,Wang, Jiaquan,Zheng, Qingshu,Li, Zhenhua,Tu, Tao

, p. 66 - 71 (2020/11/18)

The amide C-N cleavage has drawn a broad interest in synthetic chemistry, biological process and pharmaceutical industry. Transition-metal, luxury ligand or excess base were always vital to the transformation. Here, we developed a transition-metal-free hydrogen-bond-assisted esterification of amides with only catalytic amount of base. The proposed crucial role of hydrogen bonding for assisting esterification was supported by control experiments, density functional theory (DFT) calculations and kinetic studies. Besides broad substrate scopes and excellent functional groups tolerance, this base-catalyzed protocol complements the conventional transition-metal-catalyzed esterification of amides and provides a new pathway to catalytic cleavage of amide C-N bonds for organic synthesis and pharmaceutical industry. [Figure not available: see fulltext.]

Tropolonate salts as acyl-transfer catalysts under thermal and photochemical conditions: Reaction scope and mechanistic insights

Mai, Binh Khanh,Koenigs, Rene M.,Nguyen, Thanh Vinh,Lyons, Demelza J.M.,Empel, Claire,Pace, Domenic P.,Dinh, An H.

, p. 12596 - 12606 (2020/11/18)

Acyl-transfer catalysis is a frequently used tool to promote the formation of carboxylic acid derivatives, which are important synthetic precursors and target compounds in organic synthesis. However, there have been only a few structural motifs known to efficiently catalyze the acyl-transfer reaction. Herein, we introduce a different acyl-transfer catalytic paradigm based on the tropolone framework. We show that tropolonate salts, due to their strong nucleophilicity and photochemical activity, can promote the coupling reaction between alcohols and carboxylic acid anhydrides or chlorides to give products under thermal or blue light photochemical conditions. Kinetic studies and density functional theory calculations suggest interesting mechanistic insights for reactions promoted by this acyl-transfer catalytic system.

Epimerization of Tertiary Carbon Centers via Reversible Radical Cleavage of Unactivated C(sp3)-H Bonds

Wang, Yaxin,Hu, Xiafei,Morales-Rivera, Cristian A.,Li, Guo-Xing,Huang, Xin,He, Gang,Liu, Peng,Chen, Gong

supporting information, p. 9678 - 9684 (2018/07/21)

Reversible cleavage of C(sp3)-H bonds can enable racemization or epimerization, offering a valuable tool to edit the stereochemistry of organic compounds. While epimerization reactions operating via cleavage of acidic C(sp3)-H bonds, such as the Cα-H of carbonyl compounds, have been widely used in organic synthesis and enzyme-catalyzed biosynthesis, epimerization of tertiary carbons bearing a nonacidic C(sp3)-H bond is much more challenging with few practical methods available. Herein, we report the first synthetically useful protocol for the epimerization of tertiary carbons via reversible radical cleavage of unactivated C(sp3)-H bonds with hypervalent iodine reagent benziodoxole azide and H2O under mild conditions. These reactions exhibit excellent reactivity and selectivity for unactivated 3° C-H bonds of various cycloalkanes and offer a powerful strategy for editing the stereochemical configurations of carbon scaffolds intractable to conventional methods. Mechanistic study suggests that the unique ability of N3? to serve as a catalytic H atom shuttle is critical to reversibly break and reform 3° C-H bonds with high efficiency and selectivity.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 91840-42-5