93-89-0Relevant articles and documents
Ester Interchange Reaction Catalyzed by Lanthanoid Tri-2-propoxides
Okano, Tamon,Hayashizaki, Yugo,Kiji, Jitsuo
, p. 1863 - 1865 (1993)
Lanthanoid tri-2-propoxides (i)3>n Ln = La, Nd, Gd, Yb) are active catalysts for the interchange reaction of the alkoxyl groups between two kinds of esters.The La catalyst is the most active among them, and the activity is higher in nonpolar solvents than in polar ones.The La catalyst is applicable to the ring-opening polymerization of 6-hexanolide.
Enantioselective sulfenylation of α-nitroesters catalyzed by diarylprolinols
Fang, Ling,Lin, Aijun,Shi, Yan,Cheng, Yixiang,Zhu, Chengjian
, p. 387 - 389 (2014)
The organocatalytic sulfenylation of α-nitroesters mediated by diaryl-l-prolinols was developed. A range of α-sulfenylated α-nitroesters were obtained in good yields with moderate to good enantioselectivities.
7,8,9-trimethyl-1-phenyl-3H-pyrrolo[2,1-d][1,2,5]triazepin-4(5H)-one. Synthesis and reactions
Kharaneko
, p. 738 - 745 (2017)
A strategy was developed for the synthesis of 7,8,9-trimethyl-1-phenyl-3H-pyrrolo[2,1-d][1,2,5]-triazepin-4(5H)-one, reactions of its functionalization at the С4 atom and aza rings fusion at the С4?N3 bond were explored. The formation mechanism of the pyrrolo-1,2,5-triazepinone scaffold was suggested.
Production of Copolyester Monomers from Plant-Based Acrylate and Acetaldehyde
Yuan, Lin,Hu, Yancheng,Zhao, Zhitong,Li, Guangyi,Wang, Aiqin,Cong, Yu,Wang, Feng,Zhang, Tao,Li, Ning
supporting information, (2021/12/14)
PCTA is an important copolyester that has been widely used in our daily necessities. Currently, its monomers are industrially produced from petroleum-derived xylene. To reduce the reliance on fossil energy, we herein disclose an alternative route to acces
A one-pot and two-stage Baeyer-Villiger reaction using 2,2′-diperoxyphenic acid under biomolecule-compatible conditions?
Gan, Shaoyan,Shi, Lei,Song, Lijuan,Yin, Jingru,Yu, Zhiyou
supporting information, p. 2232 - 2239 (2022/04/03)
An efficient oxidant named 2,2′-diperoxyphenic acid was newly developed, and it exhibited high stability as revealed by thermogravimetric analysis (TGA) coupled with differential scanning calorimetry (DSC). On applying this reagent in the Baeyer-Villiger oxidation, the reaction featured a markedly broad substrate scope and good functional group tolerance, giving rise to the corresponding products in good to excellent yields. Particularly, in the case of pure water or 1× Phosphate Buffered Saline (1× PBS) serving as the solvent, the protocol could work well, resulting in yields ranging from 81% to 98%. Moreover, the catalytic asymmetric version of the BV reaction was explored as well, affording the corresponding products in good yields and medium ee. Remarkably, the corresponding biological compatibility and greenness assessment indicated that this reagent had favorable application prospects in the biomedical and green manufacturing fields. Meanwhile, mechanistic studies including 18O isotope effect experiments and DFT computations suggested that this reaction followed the generally accepted mechanism of BV oxidation.
Remarkably Efficient Iridium Catalysts for Directed C(sp2)-H and C(sp3)-H Borylation of Diverse Classes of Substrates
Chattopadhyay, Buddhadeb,Hassan, Mirja Md Mahamudul,Hoque, Md Emdadul
supporting information, p. 5022 - 5037 (2021/05/04)
Here we describe the discovery of a new class of C-H borylation catalysts and their use for regioselective C-H borylation of aromatic, heteroaromatic, and aliphatic systems. The new catalysts have Ir-C(thienyl) or Ir-C(furyl) anionic ligands instead of the diamine-type neutral chelating ligands used in the standard C-H borylation conditions. It is reported that the employment of these newly discovered catalysts show excellent reactivity and ortho-selectivity for diverse classes of aromatic substrates with high isolated yields. Moreover, the catalysts proved to be efficient for a wide number of aliphatic substrates for selective C(sp3)-H bond borylations. Heterocyclic molecules are selectively borylated using the inherently elevated reactivity of the C-H bonds. A number of late-stage C-H functionalization have been described using the same catalysts. Furthermore, we show that one of the catalysts could be used even in open air for the C(sp2)-H and C(sp3)-H borylations enabling the method more general. Preliminary mechanistic studies suggest that the active catalytic intermediate is the Ir(bis)boryl complex, and the attached ligand acts as bidentate ligand. Collectively, this study underlines the discovery of new class of C-H borylation catalysts that should find wide application in the context of C-H functionalization chemistry.
Mechanically induced solvent-free esterification method at room temperature
Zheng, Lei,Sun, Chen,Xu, Wenhao,Dushkin, Alexandr V.,Polyakov, Nikolay,Su, Weike,Yu, Jingbo
, p. 5080 - 5085 (2021/02/05)
Herein, we describe two novel strategies for the synthesis of esters, as achieved under high-speed ball-milling (HSBM) conditions at room temperature. In the presence of I2 and KH2PO2, the reactions afford the desired esterification derivatives in 45% to 91% yields within 20 min of grinding. Meanwhile, using KI and P(OEt)3, esterification products can be obtained in 24% to 85% yields after 60 min of grinding. In addition, the I2/KH2PO2 protocol was successfully extended to the late-stage diversification of natural products showing the robustness of this useful approach. Further application of this method in the synthesis of inositol nicotinate was also discussed. This journal is
PCl3-mediated transesterification and aminolysis of tert-butyl esters via acid chloride formation
Wu, Xiaofang,Zhou, Lei,Li, Fangshao,Xiao, Jing
, p. 491 - 497 (2021/01/20)
A PCl3-mediated conversion of tert-butyl esters into esters and amides in one-pot under air is developed. This novel protocol is highlighted by the synthesis of skeletons of bioactive molecules and gram-scale reactions. Mechanistic studies revealed that this transformation involves the formation of an acid chloride in situ, which is followed by reactions with alcohols or amines to afford the desired products.
Design, Synthesis, and Study of the Insecticidal Activity of Novel Steroidal 1,3,4-Oxadiazoles
Bai, Hangyu,Jiang, Weiqi,Li, Qi,Li, Tian,Ma, Shichuang,Shi, Baojun,Wu, Wenjun
, p. 11572 - 11581 (2021/10/12)
A series of novel steroidal derivatives with a substituted 1,3,4-oxadiazole structure was designed and synthesized, and the target compounds were evaluated for their insecticidal activity against five aphid species. Most of the tested compounds exhibited potent insecticidal activity against Eriosoma lanigerum (Hausmann), Myzus persicae, and Aphis citricola. Compounds 20g and 24g displayed the highest activity against E. lanigerum, showing LC50 values of 27.6 and 30.4 μg/mL, respectively. Ultrastructural changes in the midgut cells of E. lanigerum were detected by transmission electron microscopy, indicating that these steroidal oxazole derivatives might exert their insecticidal activity by destroying the mitochondria and nuclear membranes in insect midgut cells. Furthermore, a field trial showed that compound 20g exhibited effects similar to those of the positive controls chlorpyrifos and thiamethoxam against E. lanigerum, reaching a control rate of 89.5% at a dose of 200 μg/mL after 21 days. We also investigated the hydrolysis and metabolism of the target compounds in E. lanigerum by assaying the activities of three insecticide-detoxifying enzymes. Compound 20g at 50 μg/mL exhibited inhibitory action on carboxylesterase similar to the known inhibitor triphenyl phosphate. The above results demonstrate the potential of these steroidal oxazole derivatives to be developed as novel pesticides.
Electrochemical esterification via oxidative coupling of aldehydes and alcohols
Smeyne, Dylan,Verboom, Katherine,Bryan, Maria,LoBue, James,Shaikh, Abid
supporting information, (2021/03/26)
An electrolytic method for the direct oxidative coupling of aldehydes with alcohols to produce esters is described. Our method involves anodic oxidation in presence of TBAF as supporting electrolyte in an undivided electrochemical cell equipped with graphite electrodes. This method successfully couples a wide range of alcohols to benzaldehydes with yields ranging from 70 to 90%. The protocol is easy to perform at a constant voltage conditions and offers a sustainable alternative over conventional methods.