Welcome to LookChem.com Sign In|Join Free

CAS

  • or

92450-98-1

Post Buying Request

92450-98-1 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

92450-98-1 Usage

Check Digit Verification of cas no

The CAS Registry Mumber 92450-98-1 includes 8 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 5 digits, 9,2,4,5 and 0 respectively; the second part has 2 digits, 9 and 8 respectively.
Calculate Digit Verification of CAS Registry Number 92450-98:
(7*9)+(6*2)+(5*4)+(4*5)+(3*0)+(2*9)+(1*8)=141
141 % 10 = 1
So 92450-98-1 is a valid CAS Registry Number.

92450-98-1Relevant articles and documents

Construction and luminescence property of a highly ordered 2D self-assembled amphiphilic bidentate organoplatinum(II) complex

Xiang, Yunjie,Li, Wenjing,Fang, Yuxi,Zhang, Dengqing,Li, Xianying,Jin, Wusong

, p. 27360 - 27369 (2016)

Rod-coil shaped amphiphilic bidentate dichloro(phenanthroline)platinum(ii) complexes, 1-Pt and 2-Pt, which possess different hydrophilic lateral chains on one side of an identical aromatic rod core, are synthesized. 1-Pt first forms dimers then arranges into well-defined two-dimensional (2D) films consisting of highly ordered molecular arrays both from methanol and on substrate. 2-Pt, as a building-block, yields micrometer-sized rigid 2D sheets without formation of an initial dimer. Red luminescence of the film is induced by self-assembly of nonemissive 1-Pt molecules, whereas sheets based on nonemissive 2-Pt gives weak yellow emission. These results indicate that the coil-rod ratio plays an important role in the structure and optical properties of these self-assemblies. Moreover, the film on the substrate at the macroscopic scale, exhibits multi-stimuli responsiveness, which predicts its application in smart chemosensing devices and probes.

The discovery and enhanced properties of trichain lipids in lipopolyplex gene delivery systems

Mohammadi, Atefeh,Kudsiova, Laila,Mustapa, M. Firouz Mohd,Campbell, Frederick,Vlaho, Danielle,Welser, Katharina,Story, Harriet,Tagalakis, Aristides D.,Hart, Stephen L.,Barlow, David J.,Tabor, Alethea B.,Lawrence, M. Jayne,Hailes, Helen C.

supporting information, p. 945 - 957 (2019/01/30)

The formation of a novel trichain (TC) lipid was discovered when a cationic lipid possessing a terminal hydroxyl group and the helper lipid dioleoyl l-α-phosphatidylethanolamine (DOPE) were formulated as vesicles and stored. Importantly, the transfection efficacies of lipopolyplexes comprised of the TC lipid, a targeting peptide and DNA (LPDs) were found to be higher than when the corresponding dichain (DC) lipid was used. To explore this interesting discovery and determine if this concept can be more generally applied to improve gene delivery efficiencies, the design and synthesis of a series of novel TC cationic lipids and the corresponding DC lipids was undertaken. Transfection efficacies of the LPDs were found to be higher when using the TC lipids compared to the DC analogues, so experiments were carried out to investigate the reasons for this enhancement. Sizing experiments and transmission electron microscopy indicated that there were no major differences in the size and shape of the LPDs prepared using the TC and DC lipids, while circular dichroism spectroscopy showed that the presence of the third acyl chain did not influence the conformation of the DNA within the LPD. In contrast, small angle neutron scattering studies showed a considerable re-arrangement of lipid conformation upon formulation as LPDs, particularly of the TC lipids, while gel electrophoresis studies revealed that the use of a TC lipid in the LPD formulation resulted in enhanced DNA protection properties. Thus, the major enhancement in transfection performance of these novel TC lipids can be attributed to their ability to protect and subsequently release DNA. Importantly, the TC lipids described here highlight a valuable structural template for the generation of gene delivery vectors, based on the use of lipids with three hydrophobic chains.

Synthesis of Phosphonic Acid Ligands for Nanocrystal Surface Functionalization and Solution Processed Memristors

De Roo, Jonathan,Zhou, Zimu,Wang, Jiaying,Deblock, Loren,Crosby, Alfred J.,Owen, Jonathan S.,Nonnenmann, Stephen S.

, p. 8034 - 8039 (2018/10/25)

Here, we synthesized 2-ethylhexyl, 2-hexyldecyl, 2-[2-(2-methoxyethoxy)ethoxy]ethyl, oleyl, and n-octadecyl phosphonic acid and used them to functionalize CdSe and HfO2 nanocrystals. In contrast to branched carboxylic acids, postsynthetic surface functionalization of CdSe and HfO2 nanocrystals was readily achieved with branched phosphonic acids. Phosphonic acid capped HfO2 nanocrystals were subsequently evaluated as memristors using conductive atomic force microscopy. We found that 2-ethylhexyl phosphonic acid is a superior ligand, combining a high colloidal stability with a compact ligand shell that results in a record-low operating voltage that is promising for application in flexible electronics.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 92450-98-1