Welcome to LookChem.com Sign In|Join Free

CAS

  • or

940-06-7

Post Buying Request

940-06-7 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

940-06-7 Usage

Uses

3,5-Dinitropyridine is used as an azabenzyne pyrolytic precursor. The anion radical of 3,5-dinitropyridine aundergoes reversible dimerization reactions.

Synthesis Reference(s)

Journal of Heterocyclic Chemistry, 15, p. 485, 1978 DOI: 10.1002/jhet.5570150323

Check Digit Verification of cas no

The CAS Registry Mumber 940-06-7 includes 6 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 3 digits, 9,4 and 0 respectively; the second part has 2 digits, 0 and 6 respectively.
Calculate Digit Verification of CAS Registry Number 940-06:
(5*9)+(4*4)+(3*0)+(2*0)+(1*6)=67
67 % 10 = 7
So 940-06-7 is a valid CAS Registry Number.
InChI:InChI=1/C5H3N3O4/c9-7(10)4-1-5(8(11)12)3-6-2-4/h1-3H

940-06-7SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 17, 2017

Revision Date: Aug 17, 2017

1.Identification

1.1 GHS Product identifier

Product name 3,5-Dinitropyridine

1.2 Other means of identification

Product number -
Other names 3,5-dinitro-pyridine

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:940-06-7 SDS

940-06-7Relevant articles and documents

Lewis Acidic Boranes, Lewis Bases, and Equilibrium Constants: A Reliable Scaffold for a Quantitative Lewis Acidity/Basicity Scale

Mayer, Robert J.,Hampel, Nathalie,Ofial, Armin R.

supporting information, p. 4070 - 4080 (2021/01/29)

A quantitative Lewis acidity/basicity scale toward boron-centered Lewis acids has been developed based on a set of 90 experimental equilibrium constants for the reactions of triarylboranes with various O-, N-, S-, and P-centered Lewis bases in dichloromethane at 20 °C. Analysis with the linear free energy relationship log KB=LAB+LBB allows equilibrium constants, KB, to be calculated for any type of borane/Lewis base combination through the sum of two descriptors, one for Lewis acidity (LAB) and one for Lewis basicity (LBB). The resulting Lewis acidity/basicity scale is independent of fixed reference acids/bases and valid for various types of trivalent boron-centered Lewis acids. It is demonstrated that the newly developed Lewis acidity/basicity scale is easily extendable through linear relationships with quantum-chemically calculated or common physical–organic descriptors and known thermodynamic data (ΔH (Formula presented.)). Furthermore, this experimental platform can be utilized for the rational development of borane-catalyzed reactions.

Thermal decomposition pathways of 1,3,3-trinitroazetidine (TNAZ), related 3,3-dinitroazetidium salts, and 15N, 13C, and 2H isotopomers

Oxley, Jimmie,Smith, James,Zheng, Weiyi,Rogers, Evan,Coburn, Michael

, p. 4375 - 4383 (2007/10/03)

The thermal decomposition of 1,3,3-trinitroazetidine (TNAZ) and related 3,3-dinitroazetidium (DNAZ+) salts was examined neat and in solution. TNAZ kinetics were found (160-250 °C) to be first-order and nearly identical neat and in benzene, with an activation energy of 46.6 kcal/mol (195 kJ/mol). The DNAZ+ salts were less thermally stable than TNAZ, and neat did not decompose in a first-order fashion. However, in aqueous solution the DNAZ+ salts did decompose following first-order kinetics; their rates were similar with minor differences apparently related to the strength of the anion as a conjugate base. Like simple nitramines such as dimethylnitramine, TNAZ tended to form N2O rather than N2, but unlike other nitramines it formed about as much NO as N2O. TNAZ isotopomers labeled with 13C and with 15N were prepared and used to identify the origin of the decomposition gases and the identity of the condensed-phase products. Early in the decomposition of TNAZ, most of the NO came from the nitro group attached to the azetidium ring nitrogen. Most of the N2O was the result of the nitro groups interacting with each other, while the majority of the N2 contained one nitrogen from the ring. Many condensed products have been identified, but five stand out because they are formed in the thermolysis of TNAZ and the three DNAZ+ salts [NO3-, Cl-, N(NO2)2-]. These are 3,5-dinitropyridine (M, always a minor product), 1-formyl-3,3-dinitroazetidine (L), 1,3-dinitroazetidine (K), 1-nitroso-3,3-dinitroazetidine (E), and 1-nitroso-3-nitroazetidine (G); the identity of the first four has been confirmed by use of authentic samples. Of these five, the last four have been shown to interconvert with TNAZ and each other under the conditions of these experiments. This study confirms the presence of two competitive TNAZ decomposition pathways. Under the conditions of this study, N-NO2 homolysis is slightly favored, but products, such as K, resulting from C-NO2 scission, are also well represented.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 940-06-7