96550-91-3Relevant articles and documents
Nickel-Catalyzed Selective Synthesis of α-Alkylated Ketones via Dehydrogenative Cross-Coupling of Primary and Secondary Alcohols
Bains, Amreen K,Biswas, Ayanangshu,Adhikari, Debashis
supporting information, p. 47 - 52 (2021/10/14)
Herein, we describe an isolable, air-stable, homogeneous, nickel catalyst that performs dehydrogenative cross-coupling reaction between secondary and primary alcohols to result α-alkylated ketone products selectively. The sequence of steps involve in this one-pot reaction is dehydrogenation of both alcohols, condensation between the ketone and the aldehyde, and hydrogenation of the in situ-generated α,β-unsaturated ketone. Preliminary mechanistic investigation hints a radical mechanism following borrowing hydrogen reaction. (Figure presented.).
Synthesis of α-Alkylated Ketones via Selective Epoxide Opening/Alkylation Reactions with Primary Alcohols
Gen?, Serta?,Gülcemal, Süleyman,Günnaz, Salih,?etinkaya, Bekir,Gülcemal, Derya
supporting information, p. 5229 - 5234 (2021/07/19)
A new method for converting terminal epoxides and primary alcohols into α-alkylated ketones under borrowing hydrogen conditions is reported. The procedure involves a one-pot epoxide ring opening and alkylation via primary alcohols in the presence of an N-heterocyclic carbene iridium(I) catalyst, under aerobic conditions, with water as the side product.
Iridium Complexes as Efficient Catalysts for Construction of α-Substituted Ketones via Hydrogen Borrowing of Alcohols in Water
Luo, Nianhua,Zhong, Yuhong,Wen, Huiling,Shui, Hongling,Luo, Renshi
, p. 1355 - 1364 (2021/03/03)
Ketones are of great importance in synthesis, biology, and pharmaceuticals. This paper reports an iridium complexes-catalyzed cross-coupling of alcohols via hydrogen borrowing, affording a series of α-alkylated ketones in high yield (86 %–95 %) and chemoselectivities (>99 : 1). This methodology has the advantages of low catalyst loading (0.1 mol%) and environmentally benign water as the solvent. Studies have shown the amount of base has a great impact on chemoselectivities. Meanwhile, deuteration experiments show water plays an important role in accelerating the reduction of the unsaturated ketones intermediates. Remarkably, a gram-scale experiment demonstrates this methodology of iridium-catalyzed cross-coupling of alcohols has potential application in the practical synthesis of α-alkylated ketones.
Unveiling the catalytic nature of palladium-N-heterocyclic carbene catalysts in the α-alkylation of ketones with primary alcohols
?etinkaya, Bekir,Ero?lu, Zafer,Gülcemal, Süleyman,Metin, ?nder,Ovezova, Mamajan
supporting information, p. 10896 - 10908 (2021/08/17)
We report herein the synthesis of four new Pd-PEPPSI complexes with backbone-modified N-heterocyclic carbene (NHC) ligands and their application as catalysts in the α-alkylation of ketones with primary alcohols using a borrowing hydrogen process and tandem Suzuki-Miyaura coupling/α-alkylation reactions. Among the synthesized Pd-PEPPSI complexes, complex2chaving 4-methoxyphenyl groups at the 4,5-positions and 4-methoxybenzyl substituents on the N-atoms of imidazole exhibited the highest catalytic activity in the α-alkylation of ketones with primary alcohols (18 examples) with yields reaching up to 95%. Additionally, complex2cwas demonstrated to be an effective catalyst for the tandem Suzuki-Miyaura-coupling/α-alkylation of ketones to give biaryl ketones with high yields. The heterogeneous nature of the present catalytic system was verified by mercury poisoning and hot filtration experiments. Moreover, the formation of NHC-stabilized Pd(0) nanoparticles during the α-alkylation reactions was identified by advanced analytical techniques.
Method for preparing alpha-alkyl substituted ketone compound
-
Paragraph 0117-0124, (2020/12/29)
The invention relates to a method for preparing an alpha-alkyl substituted ketone compound, which comprises the following steps: preparing a primary alcohol compound and a secondary alcohol compound as raw materials, adding alkali; with a cyclic iridium complex as a catalyst and water as a reaction medium, heating and stirring the mixture and reacting for 10 to 24 hours under the protection of inert gas, and cooling a reaction product to room temperature after the reaction is finished; carrying out reduced pressure distillation and concentration to obtain a crude product, and carrying out column chromatography purification to obtain a series of alpha alkyl substituted ketone compounds. The method is simple to operate, available in raw materials, low in price, high in reaction efficiency and selectivity, good in adaptability to various functional groups and wide in substrate universality; since water is used as a reaction medium to meet the green and environment-friendly requirements, the method is environmentally friendly and is carried out at gram level, so that the potential of industrially synthesizing the alpha alkyl substituted ketone compound is achieved; therefore, The method has expanded application in the fields of medicines, organic synthesis and the like.
Phosphine-free pincer-ruthenium catalyzed biofuel production: High rates, yields and turnovers of solventless alcohol alkylation
Das, Babulal,Das, Kanu,Kumar, Akshai,Srivastava, Hemant Kumar,Yasmin, Eileen
, p. 8347 - 8358 (2020/12/31)
Phosphine-free pincer-ruthenium carbonyl complexes based on bis(imino)pyridine and 2,6-bis(benzimidazole-2-yl) pyridine ligands have been synthesized. For the β-alkylation of 1-phenyl ethanol with benzyl alcohol at 140 °C under solvent-free conditions, (Cy2NNN)RuCl2(CO) (0.00025 mol%) in combination with NaOH (2.5 mol%) was highly efficient (ca. 93% yield, 372?000 TON at 12?000 TO h-1). These are the highest reported values hitherto for a ruthenium based catalyst. The β-alkylation of various alcohol combinations was accomplished with ease which culminated to give 380?000 TON at 19?000 TO h-1 for the β-alkylation of 1-phenyl ethanol with 3-methoxy benzyl alcohol. DFT studies were complementary to mechanistic studies and indicate the β-hydride elimination step involving the extrusion of acetophenone to be the overall RDS. While the hydrogenation step is favored for the formation of α-alkylated ketone, the alcoholysis step is preferred for the formation of β-alkylated alcohol. The studies were extended for the upgradation of ethanol to biofuels. Among the pincer-ruthenium complexes based on bis(imino)pyridine, (Cy2NNN)RuCl2(CO) provided high productivity (335 TON at 170 TO h-1). Sterically more open pincer-ruthenium complexes such as (Bim2NNN)RuCl2(CO) based on the 2,6-bis(benzimidazole-2-yl) pyridine ligand demonstrated better reactivity and gave not only good ethanol conversion (ca. 58%) but also high turnovers (ca. 2100) with a good rate (ca. 710 TO h-1). Kinetic studies indicate first order dependence on concentration of both the catalyst and ethanol. Phosphine-free catalytic systems operating with unprecedented activity at a very low base loading to couple lower alcohols to higher alcohols of fuel and pharmaceutical importance are the salient features of this report. This journal is
Cyclometalated Ruthenium Pincer Complexes as Catalysts for the α-Alkylation of Ketones with Alcohols
Piehl, Patrick,Amuso, Roberta,Alberico, Elisabetta,Junge, Henrik,Gabriele, Bartolo,Neumann, Helfried,Beller, Matthias
supporting information, p. 6050 - 6055 (2020/03/13)
Ruthenium PNP pincer complexes bearing supplementary cyclometalated C,N-bound ligands have been prepared and fully characterized for the first time. By replacing CO and H? as ancillary ligands in such complexes, additional electronic and steric modifications of this topical class of catalysts are possible. The advantages of the new catalysts are demonstrated in the general α-alkylation of ketones with alcohols following a hydrogen autotransfer protocol. Herein, various aliphatic and benzylic alcohols were applied as green alkylating agents for ketones bearing aromatic, heteroaromatic or aliphatic substituents as well as cyclic ones. Mechanistic investigations revealed that during catalysis, Ru carboxylate complexes are predominantly formed whereas neither the PNP nor the CN ligand are released from the catalyst in significant amounts.
Method for synthesizing alpha-alkylated ketone in water
-
Paragraph 0077-0081, (2020/08/22)
The invention discloses a method for synthesizing alpha-alkylated ketone in water. The method comprises the following steps: adding ketone, compound alcohol, a transition metal iridium catalyst, an alkali and a solvent, namely water into a reaction container, carrying out a reflux reaction on a reaction mixture in the air for several hours, carrying out cooling to room temperature, carrying out rotary evaporation to remove the solvent, and carrying out column separation (ethyl acetate/petroleum ether) to obtain a target compound, namely alpha-alkylated ketone. A reaction equivalent substrate is used in the reaction process, so raw material waste is avoided; equivalent alkali is used, so better environmental protection performance is obtained; water reflux reaction conditions are milder; and non-toxic and harmless pure water is used as the solvent in the reaction, only water is generated as a by-product, so atom reaction economy is high, and the requirements of green chemistry are met.
Metal-Free Cyclopropanol Ring-Opening C(sp3)-C(sp2) Cross-Couplings with Aryl Sulfoxides
Chen, Dengfeng,Fu, Yuanyuan,Cao, Xiaoji,Luo, Jinyue,Wang, Fei,Huang, Shenlin
, p. 5600 - 5605 (2019/08/01)
A metal-free method for formal β-arylation/heteroarylation of ketones through efficient cyclopropanol ring-opening cross-couplings with aryl sulfoxides at room temperature has been developed. This protocol shows a broad substrate scope and promising scalability. In addition, the utility of the β-arylated ketones is further demonstrated through a variety of postcoupling transformations and synthetic applications.
Nickel-Catalyzed Alkylation of Ketone Enolates: Synthesis of Monoselective Linear Ketones
Das, Jagadish,Vellakkaran, Mari,Banerjee, Debasis
, p. 769 - 779 (2019/01/24)
Herein we have developed a Ni-catalyzed protocol for the synthesis of linear ketones. Aryl, alkyl, and heteroaryl ketones as well as alcohols yielded the monoselective ketones in up to 90% yield. The catalytic protocol was successfully applied in to a gram-scale synthesis. For a practical utility, applications of a steroid derivative, oleyl alcohol, and naproxen alcohol were employed. Preliminary catalytic investigations involving the isolation of a Ni intermediate and defined Ni-H species as well as a series of deuterium-labeling experiments were performed.