98-94-2Relevant articles and documents
Chemoselective and Tandem Reduction of Arenes Using a Metal–Organic Framework-Supported Single-Site Cobalt Catalyst
Akhtar, Naved,Begum, Wahida,Chauhan, Manav,Manna, Kuntal,Newar, Rajashree,Rawat, Manhar Singh
supporting information, (2022/01/19)
The development of heterogeneous, chemoselective, and tandem catalytic systems using abundant metals is vital for the sustainable synthesis of fine and commodity chemicals. We report a robust and recyclable single-site cobalt-hydride catalyst based on a porous aluminum metal–organic framework (DUT-5 MOF) for chemoselective hydrogenation of arenes. The DUT-5 node-supported cobalt(II) hydride (DUT-5-CoH) is a versatile solid catalyst for chemoselective hydrogenation of a range of nonpolar and polar arenes, including heteroarenes such as pyridines, quinolines, isoquinolines, indoles, and furans to afford cycloalkanes and saturated heterocycles in excellent yields. DUT-5-CoH exhibited excellent functional group tolerance and could be reusable at least five times without decreased activity. The same MOF-Co catalyst was also efficient for tandem hydrogenation–hydrodeoxygenation of aryl carbonyl compounds, including biomass-derived platform molecules such as furfural and hydroxymethylfurfural to cycloalkanes. In the case of hydrogenation of cumene, our spectroscopic, kinetic, and density functional theory (DFT) studies suggest the insertion of a trisubstituted alkene intermediate into the Co–H bond occurring in the turnover limiting step. Our work highlights the potential of MOF-supported single-site base–metal catalysts for sustainable and environment-friendly industrial production of chemicals and biofuels.
Simplified preparation of a graphene-co-shelled Ni/NiO@C nano-catalyst and its application in theN-dimethylation synthesis of amines under mild conditions
Liu, Jianguo,Ma, Longlong,Song, Yanpei,Zhang, Mingyue,Zhuang, Xiuzheng
supporting information, p. 4604 - 4617 (2021/06/30)
The development of Earth-abundant, reusable and non-toxic heterogeneous catalysts to be applied in the pharmaceutical industry for bio-active relevant compound synthesis remains an important goal of general chemical research.N-methylated compounds, as one of the most essential bioactive compounds, have been widely used in the fine and bulk chemical industries for the production of high-value chemicals. Herein, an environmentally friendly and simplified method for the preparation of graphene encapsulated Ni/NiO nanoalloy catalysts (Ni/NiO@C) was developed for the first time, for the highly selective synthesis ofN-methylated compounds using various functional amines and aldehydes under easy to handle, and industrially applicable conditions. A large number of primary and secondary amines (more than 70 examples) could be converted to the correspondingN,N-dimethylamines with the participation of different functional aldehydes, with an average yield of over 95%. A gram-scale synthesis also demonstrated a similar yield when compared with the benchmark test. In addition, it was further proved that the catalyst could easily be recycled because of its intrinsic magnetism and reused up to 10 times without losing its activity and selectivity. Also, for the first time, the tandem synthesis ofN,N-dimethylamine products in a one-pot process, using only a single earth-abundant metal catalyst, whose activity and selectivity were more than 99% and 94%, respectively, for all tested substrates, was developed. Overall, the advantages of this newly developed method include operational simplicity, high stability, easy recyclability, cost-effectiveness of the catalyst, and good functional group compatibility for the synthesis ofN-methylation products as well as the industrially applicable tandem synthesis process.
Simple RuCl3-catalyzed N-Methylation of Amines and Transfer Hydrogenation of Nitroarenes using Methanol
Sarki, Naina,Goyal, Vishakha,Tyagi, Nitin Kumar,Puttaswamy,Narani, Anand,Ray, Anjan,Natte, Kishore
, p. 1722 - 1729 (2021/04/19)
Methanol is a potential hydrogen source and C1 synthon, which finds interesting applications in both chemical synthesis and energy technologies. The effective utilization of this simple alcohol in organic synthesis is of central importance and attracts scientific interest. Herein, we report a clean and cost-competitive method with the use of methanol as both C1 synthon and H2 source for selective N-methylation of amines by employing relatively cheap RuCl3.xH2O as a ligand-free catalyst. This readily available catalyst tolerates various amines comprising electron-deficient and electron-donating groups and allows them to transform into corresponding N-methylated products in moderate to excellent yields. In addition, few marketed pharmaceutical agents (e. g., venlafaxine and imipramine) were also successfully synthesized via late-stage functionalization from readily available feedstock chemicals, highlighting synthetic value of this advanced N-methylation reaction. Using this platform, we also attempted tandem reactions with selected nitroarenes to convert them into corresponding N-methylated amines using MeOH under H2-free conditions including transfer hydrogenation of nitroarenes-to-anilines and prepared drug molecules (e. g., benzocaine and butamben) as well as key pharmaceutical intermediates. We further enable one-shot selective and green syntheses of 1-methylbenzimidazole using ortho-phenylenediamine (OPDA) and methanol as coupling partners.
Screening and characterization of a diverse panel of metagenomic imine reductases for biocatalytic reductive amination
Marshall, James R.,Yao, Peiyuan,Montgomery, Sarah L.,Finnigan, James D.,Thorpe, Thomas W.,Palmer, Ryan B.,Mangas-Sanchez, Juan,Duncan, Richard A. M.,Heath, Rachel S.,Graham, Kirsty M.,Cook, Darren J.,Charnock, Simon J.,Turner, Nicholas J.
, p. 140 - 148 (2021/01/04)
Finding faster and simpler ways to screen protein sequence space to enable the identification of new biocatalysts for asymmetric synthesis remains both a challenge and a rate-limiting step in enzyme discovery. Biocatalytic strategies for the synthesis of chiral amines are increasingly attractive and include enzymatic asymmetric reductive amination, which offers an efficient route to many of these high-value compounds. Here we report the discovery of over 300 new imine reductases and the production of a large (384 enzymes) and sequence-diverse panel of imine reductases available for screening. We also report the development of a facile high-throughput screen to interrogate their activity. Through this approach we identified imine reductase biocatalysts capable of accepting structurally demanding ketones and amines, which include the preparative synthesis of N-substituted β-amino ester derivatives via a dynamic kinetic resolution process, with excellent yields and stereochemical purities. [Figure not available: see fulltext.]
Preparation method of N-alkylated derivative of primary amine compound
-
Paragraph 0021; 0052, (2021/07/09)
The invention relates to a preparation method of an N-alkylated derivative of a primary amine compound. The method comprises the following steps: uniformly mixing a primary amine compound, an alcohol compound and a catalyst in a reactor, and heating to react for a period of time to generate an N-alkylated substituted tertiary amine compound; wherein the catalyst is a copper-cobalt bimetallic catalyst, and the carrier of the catalyst is Al2O3. According to the method, alcohol is adopted as an alkylating reagent and is low in price and easy to obtain, a byproduct is water, no pollution is caused to the environment, and the overall reaction atom economy is high; the catalyst is simple in preparation method, low in cost, high in reaction activity and good in structural stability; meanwhile, by using the copper-cobalt bimetallic catalyst, the use of strong base additives can be avoided, and the requirement on reaction equipment is low; and the reaction post-treatment is convenient, and the catalyst can be recycled and is environment-friendly.
Boosting Mass Exchange between Pd/NC and MoC/NC Dual Junctions via Electron Exchange for Cascade CO2 Fixation
Chen, Jie-Sheng,Li, Qi-Yuan,Li, Xin-Hao,Lin, Xiu,Xia, Si-Yuan,Xu, Dong,Zhai, Guang-Yao,Zhang, Shi-Nan
supporting information, (2022/03/15)
Merging existing catalysts together as a cascade catalyst may achieve one-pot synthesis of complex but functional molecules by simplifying multistep reactions, which is the blueprint of sustainable chemistry with low pollutant emission and consumption of energy and materials only when the smooth mass exchange between different catalysts is ensured. Effective strategies to facilitate the mass exchange between different active centers, which may dominate the final activity of various cascade catalysts, have not been reached until now, even though charged interfaces due to work function driven electron exchange have been widely observed. Here, we successfully constructed mass (reactants and intermediates) exchange paths between Pd/N-doped carbon and MoC/N-doped carbon induced by interfacial electron exchange to trigger the mild and cascade methylation of amines using CO2and H2. Theoretical and experimental results have demonstrated that the mass exchange between electron-rich MoC and electron-deficient Pd could prominently improve the production of N,N-dimethyl tertiary amine, which results in a remarkably high turnover frequency value under mild conditions, outperforming the state-of-the-art catalysts in the literature by a factor of 5.9.
The selective reductive amination of aliphatic aldehydes and cycloaliphatic ketones with tetragonal zirconium dioxide as the heterogeneous catalyst
Bai, Peng,Li, Jiacong,Tong, Xinli,Wang, Shun,Zhang, Haigang,Zhang, Ming
, (2020/07/17)
A selective reductive amination of aliphatic aldehydes and cycloaliphatic ketones is achieved with tetragonal zirconium dioxide (t-ZrO2) as the catalyst. With N, N-dimethyl formamide (DMF) as the solvent, low-molecular-weight amine source and reductant, a more than 99 percent yield of N, N-dimethylpentan-1-amine or N, N-dimethyl cyclohexanamine was obtained when n-pentanal or cyclohexanone was used as the substrate. Particularly, the crystallographic structures exhibit a significant effect on catalytic performance where the tetragonal crystalline was preferable to monoclinic one during the reductive amination reaction. In addition, the recycling experiments of catalysts indicate that t-ZrO2 still kept a high catalytic activity even after being reused five times. From the result of DFT calculations, it is concluded that the crystalline of zirconium dioxide is closely related to the charge transferring rate between the catalyst and the adsorbed reactant. Finally, based on the experiment phenomena and simulation result, a possible reaction mechanism is proposed for the reductive amination of cyclohexanone.
Photon-initiated heterogeneous redox couples for methylation of anilines under mild conditions
Zhang, Bing,Gao, Hua,Wang, Wei
, p. 4433 - 4437 (2020/08/10)
Methylation of anilines has drawn a lot of attention due to their valuable applications and directly using methanol as a methylation reagent is of great advantage. Photon-initiated heterogeneous catalysis of this methylation process meets the requirements of green chemistry. Herein we show that balanced redox zones within carbon nitride supported Pd nanoparticles boost the selectivity of methylation of anilines under mild conditions.
Catalyst-free selective: N -formylation and N -methylation of amines using CO2 as a sustainable C1 source
Zou, Qizhuang,Long, Guangcai,Zhao, Tianxiang,Hu, Xingbang
supporting information, p. 1134 - 1138 (2020/03/11)
We herein describe catalyst-free selective N-formylation and N-methylation of amines using CO2 as a sustainable C1 source. By tuning the reaction solvent and temperature, the selective synthesis of formamides and methylamines is achieved in good to excellent yields using sodium borohydride (NaBH4) as a sustainable reductant.
Cobalt-Nanoparticles Catalyzed Efficient and Selective Hydrogenation of Aromatic Hydrocarbons
Murugesan, Kathiravan,Senthamarai, Thirusangumurugan,Alshammari, Ahmad S.,Altamimi, Rashid M.,Kreyenschulte, Carsten,Pohl, Marga-Martina,Lund, Henrik,Jagadeesh, Rajenahally V.,Beller, Matthias
, p. 8581 - 8591 (2019/09/12)
The development of inexpensive and practical catalysts for arene hydrogenations is key for future valorizations of this general feedstock. Here, we report the development of cobalt nanoparticles supported on silica as selective and general catalysts for such reactions. The specific nanoparticles were prepared by assembling cobalt-pyromellitic acid-piperazine coordination polymer on commercial silica and subsequent pyrolysis. Applying the optimal nanocatalyst, industrial bulk, substituted, and functionalized arenes as well as polycyclic aromatic hydrocarbons are selectively hydrogenated to obtain cyclohexane-based compounds under industrially viable and scalable conditions. The applicability of this hydrogenation methodology is presented for the storage of H2 in liquid organic hydrogen carriers.