103028-79-1Relevant articles and documents
Nickel-catalyzed: C-alkylation of thioamide, amides and esters by primary alcohols through a hydrogen autotransfer strategy
Yang, Peng,Wang, Xiuhua,Ma, Yu,Sun, Yaxin,Zhang, Li,Yue, Jieyu,Fu, Kaiyue,Zhou, Jianrong Steve,Tang, Bo
supporting information, p. 14083 - 14086 (2020/11/20)
A simple catalyst of Ni(OAc)2 and P(t-Bu)3 enables selective C-alkylation of thioacetamides and primary acetamides with alcohols for the first time. Monoalkylation of thioamides, amides and t-butyl esters occurs in excellent yields (>95%). Mechanistic studies reveal that the reaction proceeds via a hydrogen autotransfer pathway. This journal is
Primary fatty acid amide preparation method
-
Paragraph 0182-0184, (2018/10/19)
The present invention provides a primary fatty acid amide preparation method. According to the present invention, under the action of a single auxiliary agent phosphine-containing transition metal catalyst or a combined auxiliary agent comprising a phosphine-free transition metal catalyst and a phosphine-containing ligand, terminally substituted olefin or cyclo-olefin, carbon monoxide and an ammonium salt are subjected to a hydrogen carboamidation reaction so as to prepare the primary fatty acid amide compound in one step; the raw material and the catalyst of the reaction are inexpensive and easy to obtain, and the synthesis process is simple, such that the synthesis cost is substantially reduced; the preparation method has characteristics of mild reaction condition and high yield, and issuitable for industrial production; and the raw material and the catalyst of the reaction are clean, non-toxic and low environment pollution.
Palladium-catalyzed regiodivergent hydroaminocarbonylation of alkenes to primary amides with ammonium chloride
Gao, Bao,Zhang, Guoying,Zhou, Xibing,Huang, Hanmin
, p. 380 - 386 (2018/01/12)
Palladium-catalyzed hydroaminocarbonylation of alkenes for the synthesis of primary amides has long been an elusive aim. Here, we report an efficient catalytic system which enables inexpensive NH4Cl to be utilized as a practical alternative to gaseous ammonia for the palladium-catalyzed alkene-hydroaminocarbonylation reaction. Through appropriate choice of the palladium precursors and ligands, either branched or linear primary amides can be obtained in good yields with good to excellent regioselectivities. Primary mechanistic studies were conducted and disclosed that electrophilic acylpalladium species were capable of capturing the NH2-moiety from ammonium salts to form amides in the presence of CO with NMP as a base.