Welcome to LookChem.com Sign In|Join Free

CAS

  • or
POLY(2-CHLOROSTYRENE) is a chemical with a specific purpose. Lookchem provides you with multiple data and supplier information of this chemical.

107830-52-4

Post Buying Request

107830-52-4 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

107830-52-4 Usage

Check Digit Verification of cas no

The CAS Registry Mumber 107830-52-4 includes 9 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 6 digits, 1,0,7,8,3 and 0 respectively; the second part has 2 digits, 5 and 2 respectively.
Calculate Digit Verification of CAS Registry Number 107830-52:
(8*1)+(7*0)+(6*7)+(5*8)+(4*3)+(3*0)+(2*5)+(1*2)=114
114 % 10 = 4
So 107830-52-4 is a valid CAS Registry Number.

107830-52-4 Well-known Company Product Price

  • Brand
  • (Code)Product description
  • CAS number
  • Packaging
  • Price
  • Detail
  • Aldrich

  • (640018)  Poly(2-chlorostyrene)  

  • 107830-52-4

  • 640018-1G

  • 4,192.11CNY

  • Detail

107830-52-4SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 12, 2017

Revision Date: Aug 12, 2017

1.Identification

1.1 GHS Product identifier

Product name Poly(2-chlorostyrene)

1.2 Other means of identification

Product number -
Other names -

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:107830-52-4 SDS

107830-52-4Related news

Polymer paperMiscibility of poly(2-chlorostyrene) and poly(vinyl methyl ether) blends08/16/2019

In this work, the miscibility of poly(2-chlorostyrene) (P2CS) and poly(vinyl methyl ether) (PVME) mixtures was characterized and compared to polystyrene (PS)/PVME blends. It was found, by light scattering, that P2CSPVME blends exhibit a lower critical solution temperature. Fourier transform infr...detailed

107830-52-4Relevant articles and documents

Copper(I)-catalyzed intramolecular cyclization reaction of 2-(2'- chlorophenyl)ethanol to give 2,3-dihydrobenzofuran

Zhu, Jingyang,Price, Benjamin A.,Zhao, Shannon X.,Skonezny, Paul M.

, p. 4011 - 4014 (2000)

Functionalized 2,3-dihydrobenzofuran can be synthesized in good yield via an intramolecular cyclization of an aryl chloride and a primary alcohol under the catalysis of copper(I) chloride salt. (C) 2000 Elsevier Science Ltd.

Lewis base-assisted Lewis acid-catalyzed selective alkene formation via alcohol dehydration and synthesis of 2-cinnamyl-1,3-dicarbonyl compounds from 2-aryl-3,4-dihydropyrans

Liu, Changhui,Pan, Bin,Gu, Yanlong

, p. 979 - 986 (2016)

Acid-catalyzed dehydration of alcohols has been widely employed for the synthesis of alkenes. However, activated alcohols when employed as substrates in dehydration reactions are often plagued by the lack of alkene selectivity. In this work, the reaction system can be significantly improved through enhancing the performance of Lewis acid catalysts in the dehydration of activated alcohols by combining with a Lewis base. Observations of the reaction mechanism revealed that the Lewis base component might have changed the reaction rate order. Although both the principal and side reaction rates decreased, the effect was markedly more observed on the latter reaction. Therefore, the selectivity of the dehydration reaction was improved. On the basis of this observation, a new route to synthesize 2-cinnamyl-1,3-dicarbonyl compounds was developed by using 2-aryl-3,4-dihydropyran as a starting substrate in the presence of a Lewis acid/Lewis base combined catalyst system.

Photoredox Catalyzed Sulfonylation of Multisubstituted Allenes with Ru(bpy)3Cl2 or Rhodamine B

Chen, Jingyun,Chen, Shufang,Jiang, Jun,Lu, Qianqian,Shi, Liyang,Xu, Zekun,Yimei, Zhao

supporting information, (2021/11/09)

A highly regio- and stereoselective sulfonylation of allenes was developed that provided direct access to α, β-substituted unsaturated sulfone. By means of visible-light photoredox catalysis, the free radicals produced by p-toluenesulfonic acid reacted with multisubstituted allenes to obtain Markovnikov-type vinyl sulfones with Ru(bpy)3Cl2 or Rhodamine B as photocatalyst. The yield of this reaction could reach up to 91%. A series of unsaturated sulfones would be used for further transformation to some valuable compounds.

Copper-Catalyzed Sulfonylation of Cyclobutanone Oxime Esters with Sulfonyl Hydrazides

Dong, Bingbing,Lu, Jiansha,Bao, Honghao,Zhang, Yuanyuan,Liu, Yingguo,Leng, Yuting

supporting information, p. 3769 - 3776 (2021/07/14)

A copper-catalyzed radical cross-coupling of cyclobutanone oxime esters with sulfonyl hydrazides has been developed. The copper-based catalytic system proved crucial for cleavage of the C-C bond of cyclobutanone oximes and for selective C-S bond-formation involving persistent sulfonyl-metal radical intermediates. This protocol is distinguished by the low-cost catalytic system, which does not require ligand, base, or toxic cyanide salt, and by the use of readily accessible starting materials, as well as broad substrate scope, providing an efficient approach to various diversely substituted cyano-containing sulfones.

Electrochemistry enabled selective vicinal fluorosulfenylation and fluorosulfoxidation of alkenes

Jiang, Yimin,Shi, Zhaojiang,Wu, Jinnan,Wu, Shaofen,Ye, Keyin,Yu, Yi,Yuan, Yaofeng

supporting information, (2021/11/17)

Both sulfur and fluorine play important roles in organic synthesis, the life science, and materials science. The direct incorporation of these elements into organic scaffolds with precise control of the oxidation states of sulfur moieties is of great significance. Herein, we report the highly selective electrochemical vicinal fluorosulfenylation and fluorosulfoxidation reactions of alkenes, which were enabled by the unique ability of electrochemistry to dial in the potentials on demand. Preliminary mechanistic investigations revealed that the fluorosulfenylation reaction proceeded through a radical-polar crossover mechanism involving a key episulfonium ion intermediate. Subsequent electrochemical oxidation of fluorosulfides to fluorosulfoxides were readily achieved under a higher applied potential with the adventitious H2O in the reaction mixture.

Controlling the Lewis Acidity and Polymerizing Effectively Prevent Frustrated Lewis Pairs from Deactivation in the Hydrogenation of Terminal Alkynes

Geng, Jiao,Hu, Xingbang,Liu, Qiang,Wu, Youting,Yang, Liu,Yao, Chenfei

, p. 3685 - 3690 (2021/05/31)

Two strategies were reported to prevent the deactivation of Frustrated Lewis pairs (FLPs) in the hydrogenation of terminal alkynes: reducing the Lewis acidity and polymerizing the Lewis acid. A polymeric Lewis acid (P-BPh3) with high stability was designed and synthesized. Excellent conversion (up to 99%) and selectivity can be achieved in the hydrogenation of terminal alkynes catalyzed by P-BPh3. This catalytic system works quite well for different substrates. In addition, the P-BPh3 can be easily recycled.

In-situ facile synthesis novel N-doped thin graphene layer encapsulated Pd@N/C catalyst for semi-hydrogenation of alkynes

Lin, Shanshan,Liu, Jianguo,Ma, Longlong,Sun, Jiangming

, (2021/12/03)

Transition metal-catalyzed semi-hydrogenation of alkynes has become one of the most popular methods for alkene synthesis. Specifically, the noble metal Pd, Rh, and Ru-based heterogeneous catalysts have been widely studied and utilized in both academia and industry. But the supported noble metal catalysts are generally suffering from leaching or aggregation during harsh reaction conditions, which resulting low catalytic reactivity and stability. Herein, we reported the facile synthesis of nitrogen doped graphene encapsulated Pd catalyst and its application in the chemo-selective semi-hydrogenation of alkynes. The graphene layer served as “bulletproof” over the active Pd Nano metal species, which was confirmed by X-ray and TEM analysis, enhanced the catalytic stability during the reaction conditions. The optimized prepared Pd@N/C catalyst showed excellent efficiency in semi-hydrogenation of phenylacetylene and other types of alkynes with un-functionalized or functionalized substituents, including the hydrogenation sensitive functional groups (NO2, ester, and halogen).

Two-Step Procedure for the Synthesis of 1,2,3,4-Tetrahydro-quinolines

Doye, Sven,Warsitz, Michael

, p. 6997 - 7014 (2020/12/01)

A new two-step procedure that includes an initial regioselective intermolecular hydroaminoalkylation of ortho-chlorostyrenes with N-methylanilines and a subsequent intramolecular Buchwald–Hartwig amination gives direct access to 1,2,3,4-tetrahydroquinolines. The hydroaminoalkylation reaction of the ortho-chlorostyrenes is catalyzed by a 2,6-bis(phenylamino)pyridinato titanium complex which delivers the linear regioisomers with high selectivities. In addition, the formation of unexpected dihydroaminoalkylation products from styrenes and N-methylanilines is reported.

Design, synthesis of novel 4,5-dihydroisoxazole-containing benzamide derivatives as highly potent FtsZ inhibitors capable of killing a variety of MDR Staphylococcus aureus

Song, Di,Bi, Fangchao,Zhang, Nan,Qin, Yinhui,Liu, Xingbang,Teng, Yuetai,Ma, Shutao

supporting information, (2020/09/11)

Antibiotic resistance among clinically significant bacterial pathogens, such as methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant S. aureus (VRSA) is becoming a prevalent threat to public health, and new antibacterial agents with novel mechanisms of action hence are in an urgent need. As a part of continuing effort to develop antibacterial agents, we rationally designed and synthesized two series of 4,5-dihydroisoxazol-5-yl and 4,5-dihydroisoxazol-3-yl-containing benzamide derivatives that targeted the bacterial cell division protein FtsZ. Evaluation of their activity against a panel of Gram-positive and -negative pathogens revealed that compound A16 possessing the 4,5-dihydroisoxazol-5-yl group showed outstanding antibacterial activity (MIC, ≤0.125–0.5 μg/mL) against various testing strains, including methicillin-resistant, penicillin-resistant and clinical isolated S. aureus strains. Besides, further mouse infection model revealed that A16 could be effective in vivo and non-toxic to Hela cells. Finally, a detailed discussion of structure-activity relationships was conducted, referring to the docking results. It is worth noting that substituting a 4,5-dihydroisoxazole ring for the isoxazole ring not only broadened the antibacterial spectrum but also resulted in a significant increase in antibacterial activity against S. aureus strains. Taken together, these results suggest a promising chemotype for the development of new FtsZ-targeting bactericidal agents.

Efficient palladium-catalyzed synthesis of 2-aryl propionic acids

Neumann, Helfried,Sergeev, Alexey G.,Spannenberg, Anke,Beller, Matthias

supporting information, (2020/09/16)

A flexible two-step, one-pot procedure was developed to synthesize 2-aryl propionic acids including the anti-inflammatory drugs naproxen and flurbiprofen. Optimal results were obtained in the presence of the novel ligand neoisopinocampheyldiphenylphosphine (NISPCPP) (9) which enabled the efficient sequential palladium-catalyzed Heck coupling of aryl bromides with ethylene and hydroxycarbonylation of the resulting styrenes to 2-aryl propionic acids. This cascade transformation leads with high regioselectivity to the desired products in good yields and avoids the need for additional purification steps.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 107830-52-4