Welcome to LookChem.com Sign In|Join Free

CAS

  • or
p-Fluorobenzonitrile, with the molecular formula C7H4F2N, is a white crystalline solid that exhibits a strong signal in the infrared spectrum. This chemical compound is widely utilized in various organic synthesis processes, particularly in the production of pharmaceuticals and agrochemicals. Additionally, it serves as an intermediate in the manufacturing of dyes and pigments.

143234-87-1 Suppliers

Post Buying Request

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier
  • 143234-87-1 Structure
  • Basic information

    1. Product Name: p-Fluorobenzonitrile
    2. Synonyms: p-Fluorobenzonitrileradical ion(1+)
    3. CAS NO:143234-87-1
    4. Molecular Formula: C7H4FN
    5. Molecular Weight: 121.1118
    6. EINECS: 214-784-9
    7. Product Categories: N/A
    8. Mol File: 143234-87-1.mol
  • Chemical Properties

    1. Melting Point: N/A
    2. Boiling Point: 189.6 °C at 760 mmHg
    3. Flash Point: 65.6 °C
    4. Appearance: /
    5. Density: 1.15 g/cm3
    6. Refractive Index: N/A
    7. Storage Temp.: N/A
    8. Solubility: N/A
    9. CAS DataBase Reference: p-Fluorobenzonitrile(CAS DataBase Reference)
    10. NIST Chemistry Reference: p-Fluorobenzonitrile(143234-87-1)
    11. EPA Substance Registry System: p-Fluorobenzonitrile(143234-87-1)
  • Safety Data

    1. Hazard Codes: N/A
    2. Statements: N/A
    3. Safety Statements: N/A
    4. WGK Germany:
    5. RTECS:
    6. HazardClass: N/A
    7. PackingGroup: N/A
    8. Hazardous Substances Data: 143234-87-1(Hazardous Substances Data)

143234-87-1 Usage

Uses

Used in Pharmaceutical Industry:
p-Fluorobenzonitrile is used as a key intermediate in the synthesis of various pharmaceutical compounds. Its unique structure allows for the development of new drugs with specific therapeutic properties, contributing to the advancement of medicine.
Used in Agrochemical Industry:
In the agrochemical sector, p-Fluorobenzonitrile is employed as a crucial component in the production of pesticides and other crop protection agents. Its incorporation enhances the effectiveness of these products, ensuring better agricultural yields.
Used in Dye and Pigment Manufacturing:
p-Fluorobenzonitrile is utilized as an intermediate in the manufacturing process of dyes and pigments. Its presence contributes to the creation of vibrant colors and improved stability in various applications, such as textiles, plastics, and printing inks.
Safety Precautions:
It is essential to handle and store p-Fluorobenzonitrile with caution due to its hazardous nature if ingested, inhaled, or comes into contact with skin. Adhering to all safety guidelines and regulations is crucial to prevent any adverse effects on health and the environment.

Check Digit Verification of cas no

The CAS Registry Mumber 143234-87-1 includes 9 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 6 digits, 1,4,3,2,3 and 4 respectively; the second part has 2 digits, 8 and 7 respectively.
Calculate Digit Verification of CAS Registry Number 143234-87:
(8*1)+(7*4)+(6*3)+(5*2)+(4*3)+(3*4)+(2*8)+(1*7)=111
111 % 10 = 1
So 143234-87-1 is a valid CAS Registry Number.

143234-87-1Relevant articles and documents

Nitrile Synthesis via Desulfonylative-Smiles Rearrangement

Abe, Masahiro,Nitta, Sayasa,Miura, Erina,Kimachi, Tetsutaro,Inamoto, Kiyofumi

, p. 4460 - 4467 (2022/03/15)

Herein, we designed a simple nitrile synthesis from N-[(2-nitrophenyl)sulfonyl]benzamides via base-promoted intramolecular nucleophilic aromatic substitution. The process features redox-neutral conditions as well as no requirement of toxic cyanide species and transition metals. Our process shows broad scope and various functional group compatibility, affording a variety of (hetero)aromatic nitriles in good to excellent yields.

Highly Efficient Oxidative Cyanation of Aldehydes to Nitriles over Se,S,N-tri-Doped Hierarchically Porous Carbon Nanosheets

Hua, Manli,Song, Jinliang,Huang, Xin,Liu, Huizhen,Fan, Honglei,Wang, Weitao,He, Zhenhong,Liu, Zhaotie,Han, Buxing

supporting information, p. 21479 - 21485 (2021/08/23)

Oxidative cyanation of aldehydes provides a promising strategy for the cyanide-free synthesis of organic nitriles. Design of robust and cost-effective catalysts is the key for this route. Herein, we designed a series of Se,S,N-tri-doped carbon nanosheets with a hierarchical porous structure (denoted as Se,S,N-CNs-x, x represents the pyrolysis temperature). It was found that the obtained Se,S,N-CNs-1000 was very selective and efficient for oxidative cyanation of various aldehydes including those containing other oxidizable groups into the corresponding nitriles using ammonia as the nitrogen resource below 100 °C. Detailed investigations revealed that the excellent performance of Se,S,N-CNs-1000 originated mainly from the graphitic-N species with lower electron density and synergistic effect between the Se, S, N, and C in the catalyst. Besides, the hierarchically porous structure could also promote the reaction. Notably, the unique feature of this metal-free catalyst is that it tolerated other oxidizable groups, and showed no activity on further reaction of the products, thereby resulting in high selectivity. As far as we know, this is the first work for the synthesis of nitriles via oxidative cyanation of aldehydes over heterogeneous metal-free catalysts.

Biomass chitosan-derived nitrogen-doped carbon modified with iron oxide for the catalytic ammoxidation of aromatic aldehydes to aromatic nitriles

Wang, Wei David,Wang, Fushan,Chang, Youcai,Dong, Zhengping

, (2020/11/24)

Nitrogen-doped carbon catalysts have attracted increasing research attention due to several advantages for catalytic application. Herein, cost-effective, renewable biomass chitosan was used to prepare a N-doped carbon modified with iron oxide catalyst (Fe2O3@NC) for nitrile synthesis. The iron oxide nanoparticles were uniformly wrapped in the N-doped carbon matrix to prevent their aggregation and leaching. Fe2O3@NC-800, which was subjected to carbonization at 800 °C, exhibited excellent activity, selectivity, and stability in the catalytic ammoxidation of aromatic aldehydes to aromatic nitriles. This study may provide a new method for the fabrication of an efficient and cost-effective catalyst system for synthesizing nitriles.

Water-Dispersible Pd–N-Heterocyclic Carbene Complex Immobilized on Magnetic Nanoparticles as a New Heterogeneous Catalyst for Fluoride-Free Hiyama, Suzuki–Miyaura and Cyanation Reactions in Aqueous Media

Chahkamali, Farhad Omarzehi,Sansano, José Miguel,Sobhani, Sara

, (2021/11/10)

Abstract: Pd–N-heterocyclic carbine complex immobilized on magnetic nanoparticles is synthesized and characterized by different techniques such as FT-IR, XPS, TEM, EDX, FESEM, VSM, TGA, and ICP. The synthesized catalyst was used as a new water dispersible heterogeneous catalyst in the fluoride-free Hiyama, Suzuki–Miyaura and cyanation reactions in pure water. By this method, different types of biaryls and aryl nitriles were synthesized in good to high yields by the reaction of a variety of aryl iodides, bromides and chlorides with triethoxyphenylsilane, phenylboronic acid and K4[Fe(CN)6]·3H2O, respectively. The presence of sulfonates as hydrophilic groups on the surface of the catalyst confers a highly water dispersible, active and yet magnetically recoverable Pd catalyst. The possibility to perform the reaction in water as a green medium, ease of the catalyst recovery and reuse by magnetic separation, and the absence of any additives or co-solvents make this method as an eco-friendly and economical protocol for the synthesis of biaryl derivatives and aryl nitriles. Graphic Abstract: A new water dispersible heterogeneous Pd–N-heterocyclic carbene for the efficient fluoride-free Hiyama, Suzuki–Miyaura and cyanation reactions in pure water is developed.[Figure not available: see fulltext.].

Synthesis and Characterization of Bidentate (P^N)Gold(III) Fluoride Complexes: Reactivity Platforms for Reductive Elimination Studies

Genoux, Alexandre,Biedrzycki, Micha?,Merino, Estíbaliz,Rivera-Chao, Eva,Linden, Anthony,Nevado, Cristina

supporting information, p. 4164 - 4168 (2020/12/23)

A new family of cationic, bidentate (P^N)gold(III) fluoride complexes has been prepared and a detailed characterization of the gold-fluoride bond has been carried out. Our results correlate with the observed reactivity of the fluoro ligand, which undergoes facile exchange with both cyano and acetylene nucleophiles. The resulting (P^N)arylgold(III)C(sp) complexes have enabled the first study of reductive elimination on (P^N)gold(III) systems, which demonstrated that C(sp2)?C(sp) bond formation occurs at higher rates than those reported for analogous phosphine-based monodentate systems.

Nickel-Catalyzed Cyanation of Aryl Thioethers

Delcaillau, Tristan,Woenckhaus-Alvarez, Adrian,Morandi, Bill

supporting information, p. 7018 - 7022 (2021/09/13)

A nickel-catalyzed cyanation of aryl thioethers using Zn(CN)2 as a cyanide source has been developed to access functionalized aryl nitriles. The ligand dcype (1,2-bis(dicyclohexylphosphino)ethane) in combination with the base KOAc (potassium acetate) is essential for achieving this transformation efficiently. This reaction involves both a C-S bond activation and a C-C bond formation. The scalability, low catalyst and reagents loadings, and high functional group tolerance have enabled both late-stage derivatization and polymer recycling, demonstrating the reaction's utility across organic chemistry.

CuO-catalyzed conversion of arylacetic acids into aromatic nitriles with K4Fe(CN)6 as the nitrogen source

Ren, Yun-Lai,Shen, Zhenpeng,Tian, Xinzhe,Xing, Ai-Ping,Zhao, Zhe

, (2020/10/26)

Readily available CuO was demonstrated to be effective as the catalyst for the conversion of arylacetic acids to aromatic nitriles with non-toxic and inexpensive K4Fe(CN)6 as the nitrogen source via the complete cleavage of the C[tbnd]N triple bond. The present method allowed a series of arylacetic acids including phenylacetic acids, naphthaleneacetic acids, 2-thiopheneacetic acid and 2-furanacetic acid to be converted into the targeted products in low to high yields.

Tetramethylammonium Fluoride Alcohol Adducts for SNAr Fluorination

Bland, Douglas C.,Lee, So Jeong,Morales-Colón, Mariá T.,Sanford, Melanie S.,Scott, Peter J. H.,See, Yi Yang

supporting information, p. 4493 - 4498 (2021/06/28)

Nucleophilic aromatic fluorination (SNAr) is among the most common methods for the formation of C(sp2)-F bonds. Despite many recent advances, a long-standing limitation of these transformations is the requirement for rigorously dry, aprotic conditions to maintain the nucleophilicity of fluoride and suppress the generation of side products. This report addresses this challenge by leveraging tetramethylammonium fluoride alcohol adducts (Me4NF·ROH) as fluoride sources for SNAr fluorination. Through systematic tuning of the alcohol substituent (R), tetramethylammonium fluoride tert-amyl alcohol (Me4NF·t-AmylOH) was identified as an inexpensive, practical, and bench-stable reagent for SNAr fluorination under mild and convenient conditions (80 °C in DMSO, without the requirement for drying of reagents or solvent). A substrate scope of more than 50 (hetero) aryl halides and nitroarene electrophiles is demonstrated.

Product selectivity controlled by manganese oxide crystals in catalytic ammoxidation

Hui, Yu,Luo, Qingsong,Qin, Yucai,Song, Lijuan,Wang, Hai,Wang, Liang,Xiao, Feng-Shou

, p. 2164 - 2172 (2021/09/20)

The performances of heterogeneous catalysts can be effectively tuned by changing the catalyst structures. Here we report a controllable nitrile synthesis from alcohol ammoxidation, where the nitrile hydration side reaction could be efficiently prevented by changing the manganese oxide catalysts. α-Mn2O3 based catalysts are highly selective for nitrile synthesis, but MnO2-based catalysts including α, β, γ, and δ phases favour the amide production from tandem ammoxidation and hydration steps. Multiple structural, kinetic, and spectroscopic investigations reveal that water decomposition is hindered on α-Mn2O3, thus to switch off the nitrile hydration. In addition, the selectivity-control feature of manganese oxide catalysts is mainly related to their crystalline nature rather than oxide morphology, although the morphological issue is usually regarded as a crucial factor in many reactions.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 143234-87-1