16666-42-5Relevant articles and documents
Regioselective Isomerization of Terminal Alkenes Catalyzed by a PC(sp3)Pincer Complex with a Hemilabile Pendant Arm
De-Botton, Sophie,Filippov, D.Sc. Oleg A.,Shubina, Elena S.,Belkova, Natalia V.,Gelman, Dmitri
, p. 5959 - 5965 (2020/10/15)
We describe an efficient protocol for the regioselective isomerization of terminal alkenes employing a previously described bifunctional Ir-based PC(sp3)complex (4) possessing a hemilabile sidearm. The isomerization, catalyzed by 4, results in a one-step shift of the double bond in good to excellent selectivity, and good yield. Our mechanistic studies revealed that the reaction is driven by the stepwise migratory insertion of Ir?H species into the terminal double bond/β-H elimination events. However, the selectivity of the reaction is controlled by dissociation of the hemilabile sidearm, which acts as a selector, favoring less sterically hindered substrates such as terminal alkenes; importantly, it prevents recombination and further isomerization of the internal ones.
Direct and Selective Synthesis of Adipic and Other Dicarboxylic Acids by Palladium-Catalyzed Carbonylation of Allylic Alcohols
Beller, Matthias,Ge, Yao,Huang, Weiheng,Jackstell, Ralf,Liu, Jiawang,Neumann, Helfried,Yang, Ji
supporting information, p. 20394 - 20398 (2020/09/21)
A general and direct synthesis of dicarboxylic acids including industrially important adipic acid by palladium-catalyzed dicarbonylation of allylic alcohol is reported. Specifically, the combination of PdCl2 and a bisphosphine ligand (HeMaRaphos) promotes two different carbonylation reactions with high activity and excellent selectivity.
A CATALYST FOR THE CARBONYLATION OF ALKENES
-
Page/Page column 44, (2017/09/02)
The present application relates to a metal complex of Formula (I) and a catalyst composition for the carbonylation of alkenes comprising the metal complex, wherein the metal is a group 10 element such as palladium, platinum or nickel, and the complex comprises a bidentate phosphine ligand. The present invention also relates to a process for the preparation of a dicarboxylic acid or ester thereof from an alkenoic acid or ester thereof, or a process for the preparation of a carboxylic acid or ester thereof from an alkene or alkenoic acid with high selectivity and activity using said metal complex or catalyst composition. The present application also relates to a method of preparing Nylon 6-6 comprising the step of copolymerising adipic acid with hexamethylenediamine.
PROCESS FOR PREPARING MONO AND DICARBOXYLIC ACIDS
-
Page/Page column 33, (2018/02/03)
The present application relates to a process for preparing a dicarboxylic acid or dicarboxylic ester according to general formula (IV) R1OOC-(CH2)m-CH2CH2-(CH2)y-COOR4 (IV), comprising the steps of subjecting alkenoic acid or alkenoate of formula (II) R1OOC-(CH2)m-CH=CH-(CH2)x-H (II) to a metathesis reaction in the presence of a metathesis catalyst to form a longer-chain alkenoic acid or alkenoate of formula (III) R1OOC-(CH2)m-CH=CH-(CH2)y-H (III) where xa carbonylation reaction in the presence of a carbonylation catalyst and a carbonyl source to form said compound of Formula (IV). Alternative embodiments provide: a process for preparing an alkenoic acid or alkenoate comprising the step of subjecting a lactone to a ring opening reaction; a process for preparing a monocarboxylic acid or monocarboxylic ester according to general formula (XI) R1OOC-(CH2)m-CH2-(CH2)y-CH3 (XI) by subjecting an alkenoic acid or alkenoate to alkene hydrogenation; and a process for preparing an alcohol or ether according to general formula (XII) R1O-CH2-(CH2)m-CH2-(CH2)y-CH3 (XII) by subjecting an alkenoic acid or alkenoate to hydrogenation. The use of the respective mono/dicarboxylic acid, mono/dicarboxylic ester, ethers or alcohols in a variety of applications is also disclosed.
A PROCESS TO PRODUCE A DIENE FROM A LACTONE
-
Page/Page column 27; 28, (2013/10/21)
The invention provides a process for the production of a diene. In the process, a lactone is heated in the presence of a first catalyst system to produce an alkene and carbon dioxide and the alkene is contacted with a second catalyst system to produce an alkyldiene.
Method for regio- and stereoselective synthesis of (E)-Β,γ- unsaturated acids from aldehydes under solvent-free conditions
Zhang, Shi-Jie,Hu, Wei-Xiao
experimental part, p. 3093 - 3100 (2010/12/19)
Synthesis of (E)-β,-γunsaturated acids from aldehydes with malonic acid has been explored under solvent-free conditions. The modified Knoevenagel condensation reaction with N-methyl morpholine (NMM) as catalyst exhibits highly β,-γ regioselectivity and exclusively E-stereoselectivity. A mechanism accounting for both regio- and stereoselectivity has been proposed and preliminarily studied. Copyright Taylor & Francis Group, LLC.
New reactions of anticancer-platinum complexes and their intriguing behaviour under various experimental conditions
Aleman, Jose,Del Solar, Virginia,Cubo, Leticia,Quiroga, Adoracion G.,Navarro Ranninger, Carmen
scheme or table, p. 10601 - 10607 (2011/01/05)
The anticancer platinum complexes here described react with organic substrates (such as acids, alkenes, alkynes) and catalyze transformations that can occur in biomolecules which contain unsaturated functions. We have analyzed the role of the platinum complexes in the observed reactions and studied the progress of the detected transformations upon variation of the reaction conditions. The Royal Society of Chemistry 2010.
Catalytic Conversion of Cellulose to Liquid Hydrocarbon Fuels by Progressive Removal of Oxygen to Facilitate Separation Processes and Achieve High Selectivities
-
Page/Page column 10-11, (2010/12/31)
Described is a method to make liquid chemicals, such as functional intermediates, solvents, and liquid fuels from biomass-derived cellulose. The method is cascading; the product stream from an upstream reaction can be used as the feedstock in the next downstream reaction. The method includes the steps of deconstructing cellulose to yield a product mixture comprising levulinic acid and formic acid, converting the levulinic acid to γ-valerolactone, and converting the γ-valerolactone to pentanoic acid. Alternatively, the γ-valerolactone can be converted to a mixture of n-butenes. The pentanoic acid so formed can be further reacted to yield a host of valuable products. For example, the pentanoic acid can be decarboxylated yield 1-butene or ketonized to yield 5-nonanone. The 5-nonanone can be hydrodeoxygenated to yield nonane, or 5-nonanone can be reduced to yield 5-nonanol. The 5-nonanol can be dehydrated to yield nonene, which can be dimerized to yield a mixture of C9 and C18 olefins, which can be hydrogenated to yield a mixture of alkanes. Alternatively, the nonene may be isomerized to yield a mixture of branched olefins, which can be hydrogenated to yield a mixture of branched alkanes. The mixture of n-butenes formed from γ-valerolactone can also be subjected to isomerization and oligomerization to yield olefins in the gasoline, jet and Diesel fuel ranges.
PROCESS FOR THE CARBONYLATION OF A CONJUGATED DIENE
-
Page 31-33, (2010/02/09)
A process for the carbonylation of a conjugated diene, comprising reacting the conjugated diene with carbon monoxide and a co-reactant having a mobile hydrogen atom in the presence of a catalyst system including: (a) a source of palladium; and (b) a bidentate diphosphine ligand of formula (II): R1R2 > p1R3m-R-R4n-p2 5R6 wherein p1 and p2 represent phosphorus atoms; R1, R2, R5, and R6 independently represent the same or different optionally substituted organic radical containing a tertiary carbon atom through which each radical is linked to the phosphorus atom; R3 and R4 independently represent the same or different optionally substituted methylene groups; R represents an organic group comprising the bivalent bridging group C1-C2 through which R is connected to R3 and R4; m and n independently represent a natural number in the range of from 0 to 4, wherein the rotation about the bond between the carbon atoms C1 and C2 of the bridging group is restricted a temperature in the range of from 0 °C to 250 °C, and wherein the dihedral angle between the plane occupied by the three atom sequence composed of C1, C2 and the atom directly bonded to C1 in the direction of p1, and the plane occupied by the three atom sequence C1, C2 and the atom directly bonded to C2 in the direction of p2, is in the range of from 0 to 120°; and (c) a source of an anion.
PREPARATION OF (E)- AND (Z)-2-METHYL-2-BUTENOIC ACIDS
-
Page 32, (2008/06/13)
A method has been developed to prepare (E)- and (Z)-2-methyl-2-butenoic acids (2M2BA) from a mixture of (E,Z)-2-methyl-2-butenenitriles (2M2BN) by the regioselective hydrolysis of (E)-2M2BN to (E)-2-methyl-2-butenoic acid (2M2BA) using enzyme catalysts having either a nitrilase activity or a combination of nitrile hydratase and amidase activities. The method provides high yields without significant conversion of (Z)-2M2BN to (Z)-2M2BA. The regioselective hydrolysis of (E)-2M2BN to (E)-2M2BA makes possible the facile separation of (E)-2M2BA from (Z)-2M2BN or (Z)-2-methyl-2-butenamide (2M2BAm), and the subsequent conversion of (Z)-2M2BN or (Z)-2M2BAm to (Z)-2M2BA.