Welcome to LookChem.com Sign In|Join Free

CAS

  • or
4-Methoxybenzylamine hydrochloride, a derivative of benzylamine, is a white solid chemical compound with a molecular formula of C8H11NO and a molecular weight of 137.18 g/mol. It is widely used in organic synthesis and serves as an intermediate in the production of various organic compounds, including pharmaceuticals, agrochemicals, dyes, and pigments.

17061-61-9 Suppliers

Post Buying Request

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier
  • 17061-61-9 Structure
  • Basic information

    1. Product Name: 4-METHOXYBENZYLAMINE HYDROCHLORIDE
    2. Synonyms: 4-METHOXYBENZYLAMINE HYDROCHLORIDE;BenzeneMethanaMine, 4-Methoxy- (hydrochloride)(1:1);[[4-Methoxyphenyl]methyl]amine hydrochloride;(4-methoxyphenyl)methanamine hydrochloride
    3. CAS NO:17061-61-9
    4. Molecular Formula: C8H11NO*ClH
    5. Molecular Weight: 173.63998
    6. EINECS: N/A
    7. Product Categories: N/A
    8. Mol File: 17061-61-9.mol
  • Chemical Properties

    1. Melting Point: 243-244℃
    2. Boiling Point: 236.5°Cat760mmHg
    3. Flash Point: 98.8°C
    4. Appearance: /
    5. Density: 1.028g/cm3
    6. Refractive Index: N/A
    7. Storage Temp.: N/A
    8. Solubility: N/A
    9. CAS DataBase Reference: 4-METHOXYBENZYLAMINE HYDROCHLORIDE(CAS DataBase Reference)
    10. NIST Chemistry Reference: 4-METHOXYBENZYLAMINE HYDROCHLORIDE(17061-61-9)
    11. EPA Substance Registry System: 4-METHOXYBENZYLAMINE HYDROCHLORIDE(17061-61-9)
  • Safety Data

    1. Hazard Codes: N/A
    2. Statements: N/A
    3. Safety Statements: N/A
    4. WGK Germany:
    5. RTECS:
    6. HazardClass: N/A
    7. PackingGroup: N/A
    8. Hazardous Substances Data: 17061-61-9(Hazardous Substances Data)

17061-61-9 Usage

Uses

Used in Pharmaceutical Industry:
4-Methoxybenzylamine hydrochloride is used as a reagent for the preparation of various pharmaceuticals. Its role as an intermediate allows for the synthesis of a wide range of organic compounds, contributing to the development of new medications and therapeutic agents.
Used in Agrochemical Industry:
In the agrochemical sector, 4-Methoxybenzylamine hydrochloride is utilized as a building block in the synthesis of agrochemicals. Its application aids in the creation of effective compounds for crop protection and pest management.
Used in Dye and Pigment Industry:
4-Methoxybenzylamine hydrochloride is employed as a key component in the synthesis of dyes and pigments. Its presence in the production process helps create a diverse range of colorants for various applications, including textiles, plastics, and printing inks.
Used in Organic Synthesis:
As a versatile intermediate, 4-Methoxybenzylamine hydrochloride is used in organic synthesis for the preparation of a broad spectrum of organic compounds. Its applications extend across multiple industries, showcasing its importance in chemical research and development.

Check Digit Verification of cas no

The CAS Registry Mumber 17061-61-9 includes 8 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 5 digits, 1,7,0,6 and 1 respectively; the second part has 2 digits, 6 and 1 respectively.
Calculate Digit Verification of CAS Registry Number 17061-61:
(7*1)+(6*7)+(5*0)+(4*6)+(3*1)+(2*6)+(1*1)=89
89 % 10 = 9
So 17061-61-9 is a valid CAS Registry Number.

17061-61-9SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 19, 2017

Revision Date: Aug 19, 2017

1.Identification

1.1 GHS Product identifier

Product name (4-methoxyphenyl)methanamine,hydrochloride

1.2 Other means of identification

Product number -
Other names 4-Methoxy-phenylmagnesium-jodid

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:17061-61-9 SDS

17061-61-9Relevant articles and documents

Deoxygenative hydroboration of primary, secondary, and tertiary amides: Catalyst-free synthesis of various substituted amines

Yi, Jaeeun,Kim, Hyun Tae,Jaladi, Ashok Kumar,An, Duk Keun

, p. 129 - 132 (2021/11/17)

Transformation of relatively less reactive functional groups under catalyst-free conditions is an interesting aspect and requires a typical protocol. Herein, we report the synthesis of various primary, secondary, and tertiary amines through hydroboration of amides using pinacolborane under catalyst-free and solvent-free conditions. The deoxygenative hydroboration of primary and secondary amides proceeded with excellent conversions. The comparatively less reactive tertiary amides were also converted to the corresponding N,N-diamines in moderate yields under catalyst-free conditions, although alcohols were obtained as a minor product.

Fabrication of ω-Transaminase@Metal-Organic Framework Biocomposites for Efficiently Synthesizing Benzylamines and Pyridylmethylamines

Yu, Jinhai,Zong, Weilu,Ding, Yingying,Liu, Junzhong,Chen, Lina,Zhang, Hongjuan,Jiao, Qingcai

, p. 380 - 390 (2021/11/05)

In this study, ten ω-transaminases (ω-TAs) have been investigated to efficiently catalyze the synthesis of twenty-four functionalized benzylamines and pyridylmethylamines. We optimized the reactions, screened suitable amino donors and compared ω-transaminases activities for all aromatic aldehyde substrates. Under the optimized conditions, eighteen aromatic amines have been obtained with 60.4%–96.6% conversions and isolated only via simple extraction and recrystallization with 18.5%–81% yields on a preparative scale. Furthermore, we first immobilized the Bm-STA onto the MOFs via the physical adsorption to overcome the limitation of free enzyme and improve their industrial applications. The obtained Bm-STA/UiO-66-NH2 composites exhibited not only high enzymes loading (80.4 mg g?1) and enzyme activity recovery (95.8%), but also the better reusability, storage stability, pH stability and the tolerance to acetone and DMF.

Aluminum Metal-Organic Framework-Ligated Single-Site Nickel(II)-Hydride for Heterogeneous Chemoselective Catalysis

Antil, Neha,Kumar, Ajay,Akhtar, Naved,Newar, Rajashree,Begum, Wahida,Dwivedi, Ashutosh,Manna, Kuntal

, p. 3943 - 3957 (2021/04/12)

The development of chemoselective and heterogeneous earth-abundant metal catalysts is essential for environmentally friendly chemical synthesis. We report a highly efficient, chemoselective, and reusable single-site nickel(II) hydride catalyst based on robust and porous aluminum metal-organic frameworks (MOFs) (DUT-5) for hydrogenation of nitro and nitrile compounds to the corresponding amines and hydrogenolysis of aryl ethers under mild conditions. The nickel-hydride catalyst was prepared by the metalation of aluminum hydroxide secondary building units (SBUs) of DUT-5 having the formula of Al(μ2-OH)(bpdc) (bpdc = 4,4′-biphenyldicarboxylate) with NiBr2 followed by a reaction with NaEt3BH. DUT-5-NiH has a broad substrate scope with excellent functional group tolerance in the hydrogenation of aromatic and aliphatic nitro and nitrile compounds under 1 bar H2 and could be recycled and reused at least 10 times. By changing the reaction conditions of the hydrogenation of nitriles, symmetric or unsymmetric secondary amines were also afforded selectively. The experimental and computational studies suggested reversible nitrile coordination to nickel followed by 1,2-insertion of coordinated nitrile into the nickel-hydride bond occurring in the turnover-limiting step. In addition, DUT-5-NiH is also an active catalyst for chemoselective hydrogenolysis of carbon-oxygen bonds in aryl ethers to afford hydrocarbons under atmospheric hydrogen in the absence of any base, which is important for the generation of fuels from biomass. This work highlights the potential of MOF-based single-site earth-abundant metal catalysts for practical and eco-friendly production of chemical feedstocks and biofuels.

Phosphine-Free Manganese Catalyst Enables Selective Transfer Hydrogenation of Nitriles to Primary and Secondary Amines Using Ammonia-Borane

Sarkar, Koushik,Das, Kuhali,Kundu, Abhishek,Adhikari, Debashis,Maji, Biplab

, p. 2786 - 2794 (2021/03/03)

Herein we report the synthesis of primary and secondary amines by nitrile hydrogenation, employing a borrowing hydrogenation strategy. A class of phosphine-free manganese(I) complexes bearing sulfur side arms catalyzed the reaction under mild reaction conditions, where ammonia-borane is used as the source of hydrogen. The synthetic protocol is chemodivergent, as the final product is either primary or secondary amine, which can be controlled by changing the catalyst structure and the polarity of the reaction medium. The significant advantage of this method is that the protocol operates without externally added base or other additives as well as obviates the use of high-pressure dihydrogen gas required for other nitrile hydrogenation reactions. Utilizing this method, a wide variety of primary and symmetric and asymmetric secondary amines were synthesized in high yields. A mechanistic study involving kinetic experiments and high-level DFT computations revealed that both outer-sphere dehydrogenation and inner-sphere hydrogenation were predominantly operative in the catalytic cycle.

Silver-Catalyzed Hydroboration of C-X (X = C, O, N) Multiple Bonds

Pandey, Vipin K.,Tiwari, Chandra Shekhar,Rit, Arnab

, p. 1681 - 1686 (2021/03/03)

AgSbF6 was developed as an effective catalyst for the hydroboration of various unsaturated functionalities (nitriles, alkenes, and aldehydes). This atom-economic chemoselective protocol works effectively under low catalyst loading, base- A nd solvent-free moderate conditions. Importantly, this process shows excellent functional group tolerance and compatibility with structurally and electronically diverse substrates (>50 examples). Mechanistic investigations revealed that the reaction proceeds via a radical pathway. Further, the obtained N,N-diborylamines were showcased to be useful precursors for amide synthesis.

Metal-Free Synthesis of Heteroaryl Amines or Their Hydrochlorides via an External-Base-Free and Solvent-Free C-N Coupling Protocol

Fan, Guang-Gao,Jiang, Bo-Wen,Sang, Wei,Cheng, Hua,Zhang, Rui,Yu, Bao-Yi,Yuan, Ye,Chen, Cheng,Verpoort, Francis

, p. 14627 - 14639 (2021/11/01)

Herein, a metal-free and solvent-free protocol was developed for the C-N coupling of heteroaryl halides and amines, which afforded numerous heteroaryl amines or their hydrochlorides without any external base. Further investigations elucidated that the basicity of amines and specific interactions derived from the X-ray crystallography analysis of 3j′·HCl played pivotal roles in the reactions. Moreover, this protocol was scalable to gram scales and applicable to drug molecules, which demonstrated its practical value for further applications.

Green method for catalyzing reduction reaction of aliphatic nitro derivative

-

Paragraph 0005-0006; 0061-0064, (2021/07/31)

The invention relates to a green method for catalyzing reduction reaction of aliphatic nitro derivatives. According to the method, non-transition metal compounds, namely triethyl boron and potassium tert-butoxide, are used as a catalytic system for the first time, an aliphatic nitro derivative and pinacolborane which is low in price and easy to obtain are catalyzed to be subjected to a reduction reaction under mild conditions, and an aliphatic amine hydrochloride product is synthesized after acidification with a hydrochloric acid aqueous solution. Compared with a traditional method, the method generally has the advantages that the catalyst is cheap and easy to obtain, operation is convenient, and reaction is safe. The selective reduction reaction of the aliphatic nitro derivative catalyzed by the non-transition metal catalyst and pinacol borane is realized for the first time, and the aliphatic amine hydrochloride product is synthesized through acidification treatment of the hydrochloric acid aqueous solution, so that a practical new reaction strategy is provided for laboratory preparation or industrial production.

Base-Catalyzed Hydrosilylation of Nitriles to Amines and Esters to Alcohols

Clarke, Joshua A.,Nikonov, Georgii I.,van der Est, Art

supporting information, p. 4434 - 4439 (2021/08/30)

Base-catalyzed hydrosilylation of nitriles to amines and esters to silylated alcohols is reported. This protocol tolerates electron-rich and electron-neutral olefins and works in the presence of basic functional groups (e. g. tertiary amines) but fails for acidic substrates, such as phenols and NH anilines. This catalytic system does not tolerate carbonyl groups, such as aldehydes, ketones, esters and carbamides, which are reduced to corresponding alcohols and amines. With the exact amount of silane, esters can be selectively reduced in the presence of nitriles, but the selectivity drops for the pairs ester/carboxamide and carboxamide/nitrile. Through competition experiments, the following preference in functional group reactivity was determined: ester > carboxamide > nitrile.

Hydrosilylative reduction of primary amides to primary amines catalyzed by a terminal [Ni-OH] complex

Bera, Jitendra K.,Pandey, Pragati

supporting information, p. 9204 - 9207 (2021/09/20)

A terminal [Ni-OH] complex1, supported by triflamide-functionalized NHC ligands, catalyzes the hydrosilylative reduction of a range of primary amides into primary amines in good to excellent yields under base-free conditions with key functional group tolerance. Catalyst1is also effective for the reduction of a variety of tertiary and secondary amides. In contrast to literature reports, the reactivity of1towards amide reduction follows an inverse trend,i.e., 1° amide > 3° amide > 2° amide. The reaction does not follow a usual dehydration pathway.

Deoxygenation of primary amides to amines with pinacolborane catalyzed by Ca[N(SiMe3)2]2(THF)2

Gong, Mingliang,Guo, Chenjun,Jiang, Linhong,Luo, Yunjie,Yu, Chong

supporting information, p. 1201 - 1206 (2021/05/29)

Deoxygenative reduction of amides is a challenging but favorable synthetic method of accessing amines. In the presence of a catalytic amount of Ca[N(SiMe3)2]2(THF)2, pinacolborane (HBpin) could efficiently reduce a broad scope of amides, primary amides in particular, into corresponding amines. Functional groups and heteroatoms showed good tolerance in this process of transformation, and a plausible reaction mechanism was proposed.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 17061-61-9