Welcome to LookChem.com Sign In|Join Free

CAS

  • or
Benzene is a chemical with a specific purpose. Lookchem provides you with multiple data and supplier information of this chemical.

174973-66-1

Post Buying Request

174973-66-1 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

174973-66-1 Usage

Chemical Description

Benzene is a colorless liquid that is used as a solvent in many chemical reactions.

Chemical Description

Benzene is a common organic solvent used in the experiments described in the article.

Chemical Description

Benzene is a colorless liquid used as a solvent in organic chemistry.

Chemical Description

Benzene is used as a solvent in the reaction.

Chemical Description

Benzene is a colorless liquid hydrocarbon that is used as a solvent.

Chemical Description

Benzene is used as a solvent in this reaction.

Chemical Description

Benzene is a colorless, highly flammable liquid with a sweet odor.

Chemical Description

Benzene is a colorless, highly flammable liquid used as a solvent in many chemical reactions.

Chemical Description

Benzene is a colorless liquid that is highly flammable and is used as a solvent.

Chemical Description

Benzene is a colorless liquid hydrocarbon that is used as a solvent and in the production of various chemicals.

Chemical Description

Benzene is a colorless liquid used as a solvent.

Chemical Description

Benzene is an organic compound that consists of six carbon atoms and six hydrogen atoms.

Chemical Description

Benzene and chloroform-methanol are solvents commonly used in organic chemistry.

Chemical Description

Benzene is a colorless liquid that is highly flammable and is used as a solvent in many chemical reactions.

Chemical Description

Benzene is a common organic solvent used in chemical reactions.

Chemical Description

Benzene is an organic chemical compound that is a colorless and highly flammable liquid with a sweet smell.

Chemical Description

Benzene is a colorless, highly flammable liquid used as a solvent.

Chemical Description

Benzene, hexane, and toluene are solvents used in the experiments.

Chemical Description

Benzene is a colorless liquid with a sweet odor, commonly used as a solvent in organic chemistry.

Chemical Description

Benzene is a colorless liquid with a sweet odor and is used as a solvent and in the production of various chemicals.

Chemical Description

Benzene-d6 and THF-d8 are deuterated solvents.

Check Digit Verification of cas no

The CAS Registry Mumber 174973-66-1 includes 9 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 6 digits, 1,7,4,9,7 and 3 respectively; the second part has 2 digits, 6 and 6 respectively.
Calculate Digit Verification of CAS Registry Number 174973-66:
(8*1)+(7*7)+(6*4)+(5*9)+(4*7)+(3*3)+(2*6)+(1*6)=181
181 % 10 = 1
So 174973-66-1 is a valid CAS Registry Number.

174973-66-1Relevant articles and documents

The Chemiluminescent Cycloreversion of an Anthracene-Benzene Biplanemer System both in the Solid State and in the Liquid State

Kimura, Masaru,Okamoto, Hideki,Kashino, Setsuo

, p. 2203 - 2212 (1994)

In the thermal cycloreversions of 9-anthracenecarboxylic acid-benzene 3a, methyl 9-anthracenecarboxylate-benzene 3b, dimethyl (or diethyl) 9,10-anthracenedicarboxylate-benzene 3c (or 3d) and anthracene-1,4-difluoro(or dichloro)benzene 3f (or 3g) biplanemers, chemiluminescence was observed for 3a-d only in the solid state at > 120 deg C but not in a liquid phase, while 3f and 3g were not chemiluminescent.Efficient chemiluminescence was observed in the photocycloreversion of all biplanemers tested in both phases.The thermodynamic parameters for the thermal cycloreversion of these biplanemers were collected.Higher activation energies were obtained in the solid state than in the liquid phase.The higher energies favor touch of the S0 surface with the S1 surface at the transition state for effecting the chemiluminescent cycloreversion.

Synergies of surface-interface multiple active sites over Al-Zr oxide solid solution supported nickel catalysts for enhancing the hydrodeoxygenation of anisole

Fan, Guoli,Li, Feng,Lin, Yanjun,Yang, Lan,Zhang, Yaowen

, (2022/01/19)

Currently, the catalytic hydrodeoxygenation (HDO) of oxygen-containing compounds derived from biomass to highly valuable chemicals or hydrocarbon bio-fuels is attracting more and more attention. Concerning the design and synthesis of high-performance supported metal catalysts for HDO, the efficient deposition/immobilization of active metal species on supports, as well as the construction of the favorable properties of supports, is quite necessary. In this work, we fabricated series of aluminum-zirconium oxide solid solution supported Ni-based catalysts by a simple surfactant-assisted homogeneous coprecipitation and applied them in the HDO of anisole. Various structural characterizations showed that surface-interface properties of Ni-based catalysts (i.e., surface acidity, defective structures, and metal-support interactions) could be finely tuned by adjusting the amount of Al introduced into Al-Zr oxide solid solutions, thus profoundly governing their catalytic HDO activities. It was demonstrated that the introduction of an appropriate amount of Al could not only enhance surface acidity and promote the formation of defective Zr-Ov-Al structures (Ov: oxygen vacancy) but also facilitate the generation of interfacial Niδ+ species bound to the support. Over the Ni-based catalyst bearing an Al2O3:ZrO2 mass ratio of 5:2, a high cyclohexane yield of ~77.4% was attained at 230 °C and 1.0 MPa initial hydrogen pressure. The high catalytic HDO efficiency was revealed to be correlated with the catalytic synergy between Ni0 and adjacent interfacial Niδ+ species, together with the promotion of neighboring defective oxygen vacancies and acidic sites, which contributed to the enhanced activation of the methoxy group in anisole and reaction intermediate and thus greatly improved HDO activity. The present findings offer a new and promising guidance for constructing high-performance metal-based catalysts via a rational surface-interface engineering.

Synthesis of Decorated Carbon Structures with Encapsulated Components by Low-Voltage Electric Discharge Treatment

Bodrikov, I. V.,Pryakhina, V. I.,Titov, D. Yu.,Titov, E. Yu.,Vorotyntsev, A. V.

, p. 60 - 69 (2022/03/17)

Abstract: Polycondensation of complexes of chloromethanes with triphenylphosphine by the action of low-voltage electric discharges in the liquid phase gives nanosized solid products. The elemental composition involving the generation of element distribution maps (scanning electron microscopy–energy dispersive X?ray spectroscopy mapping) and the component composition (by direct evolved gas analysis–mass spectrometry) of the solid products have been studied. The elemental and component compositions of the result-ing structures vary widely depending on the chlorine content in the substrate and on the amount of triphenylphosphine taken. Thermal desorption analysis revealed abnormal behavior of HCl and benzene present in the solid products. In thermal desorption spectra, these components appear at an uncharacteristically high temperature. The observed anomaly in the behavior of HCl is due to HCl binding into a complex of the solid anion HCI-2 with triphenyl(chloromethyl)phosphonium chloride, which requires a relatively high temperature (up to 800 K) to decompose. The abnormal behavior of benzene is associated with its encapsulated state in nanostructures. The appearance of benzene begins at 650 K and continues up to temperatures above 1300?K.

Impact of oxygen vacancies in Ni supported mixed oxide catalysts on anisole hydrodeoxygenation

Ali, Hadi,Kansal, Sushil Kumar,Lauwaert, Jeroen,Saravanamurugan, Shunmugavel,Thybaut, Joris W.,Vandevyvere, Tom

, (2022/03/02)

The hydrodeoxygenation (HDO) activity of anisole has been investigated over Ni catalysts on mixed metal oxide supports containing Nb–Zr and Ti–Zr in 1:1 and 1:4 ratios. XRD patterns indicate the incorporation of Ti (or Nb) into the ZrO2 framewo

Selective catalytic synthesis of bio-based high value chemical of benzoic acid from xylan with Co2MnO4@MCM-41 catalyst

Fan, Minghui,He, Yuting,Li, Quanxin,Luo, Yuehui,Yang, Mingyu,Zhang, Yanhua,Zhu, Lijuan

, (2021/12/20)

The efficient synthesis of bio-based chemicals using renewable carbon resources is of great significance to promote sustainable chemistry and develop green economy. This work aims to demonstrate that benzoic acid, an important high added value chemical in petrochemical industry, can be selectively synthesized using xylan (a typical model compound of hemicellulose). This novel controllable transformation process was achieved by selective catalytic pyrolysis of xylan and subsequent catalytic oxidation. The highest benzoic acid selectivity of 88.3 % with 90.5 % conversion was obtained using the 10wt%Co2MnO4@MCM-41 catalyst under the optimized reaction conditions (80 °C, 4 h). Based on the study of the model compounds and catalyst's characterizations, the reaction pathways for the catalytic transformation of xylan to bio-based benzoic acid were proposed.

Wavelength-Specific Product Desorption as a Key to Raising Nitrile Yield of Primary Alcohol Ammoxidation over Illuminated Pd Nanoparticles

Han, Pengfei,Tang, Cheng,Sarina, Sarina,Waclawik, Eric R.,Du, Aijun,Bottle, Steven E.,Fang, Yanfen,Huang, Yingping,Li, Kun,Zhu, Huai-Yong

, p. 2280 - 2289 (2022/02/14)

Research on visible-light photocatalysts of metal nanoparticles (NPs) has focused on increasing the reactant conversion by light-excited charges (electrons and positively charged holes). However, light irradiation can accelerate catalysis by other mechanisms. Here, we report that 650 nm wavelength irradiation of 0.75 W·cm-2 significantly increases nitrile yield of ammoxidation of primary aromatic alcohols with an ammonium salt over supported Pd NPs at 80 °C in air. We found that the desorption of the nitrile product from the catalyst is the rate-determining step; the irradiation promotes not only alcohol oxidation and subsequent aldehyde cyanation over the Pd NPs but also the nitrile desorption selectively via resonance energy transfer to achieve a high nitrile yield. This new mechanism provides a knob for the exquisite control of catalytic reaction pathways for ecofriendly synthesis.

One-step conversion of lignin-derived alkylphenols to light arenes by co-breaking of C-O and C-C bonds

Di, Yali,Li, Guangyu,Li, Zhiqin,Liu, Weiwei,Qiu, Zegang,Ren, Xiaoxiong,Wang, Ying

, p. 2710 - 2721 (2022/02/21)

The conversion of lignin-derived alkylphenols to light arenes by a one-step reaction is still a challenge. A 'shortcut' route to transform alkylphenols via the co-breaking of C-O and C-C bonds is presented in this paper. The catalytic transformation of 4-ethylphenol in the presence of H2 was used to test the breaking of C-O and C-C bonds. It was found that the conversion of 4-ethylphenol was nearly 100%, and the main products were light arenes (benzene and toluene) and ethylbenzene under the catalysis of Cr2O3/Al2O3. The conversion of 4-ethylphenol and the selectivity of the products were significantly influenced by the reaction temperature. The selectivity for light arenes reached 55.7% and the selectivity for overall arenes was as high as 84.0% under suitable reaction conditions. Such results confirmed that the co-breaking of the C-O and C-C bonds of 4-ethylphenol on a single catalyst by one step was achieved with high efficiency. The adsorption configuration of the 4-ethylphenol molecule on the catalyst played an important role in the breaking of the C-O and C-C bonds. Two special adsorption configurations of 4-ethylphenol, including a parallel adsorption and a vertical adsorption, might exist in the reaction process, as revealed by DFT calculations. They were related to the breaking of C-O and C-C bonds, respectively. A path for the hydrogenation reaction of 4-ethylphenol on Cr2O3/Al2O3 was proposed. Furthermore, the co-breaking of the C-O and C-C bonds was also achieved in the hydrogenation reactions of several alkylphenols. This journal is

Few-Atom Pt Ensembles Enable Efficient Catalytic Cyclohexane Dehydrogenation for Hydrogen Production

Cai, Xiangbin,Deng, Yuchen,Diao, Jiangyong,Dong, Chunyang,Guo, Jinqiu,Guo, Yu,Jia, Zhimin,Jiang, Zheng,Li, Chengyu,Li, Jun,Liu, Hongyang,Liu, Jin-Cheng,Ma, Ding,Wang, Meng,Wang, Ning,Xiao, Hai,Xie, Jinglin,Xu, Bingjun,Zhang, Hongbo

supporting information, p. 3535 - 3542 (2022/02/16)

Identification of catalytic active sites is pivotal in the design of highly effective heterogeneous metal catalysts, especially for structure-sensitive reactions. Downsizing the dimension of the metal species on the catalyst increases the dispersion, which is maximized when the metal exists as single atoms, namely, single-atom catalysts (SACs). SACs have been reported to be efficient for various catalytic reactions. We show here that the Pt SACs, although with the highest metal atom utilization efficiency, are totally inactive in the cyclohexane (C6H12) dehydrogenation reaction, an important reaction that could enable efficient hydrogen transportation. Instead, catalysts enriched with fully exposed few-atom Pt ensembles, with a Pt-Pt coordination number of around 2, achieve the optimal catalytic performance. The superior performance of a fully exposed few-atom ensemble catalyst is attributed to its high d-band center, multiple neighboring metal sites, and weak binding of the product.

Method of regenerating zeolite catalyst for aromatization of acetylene by plasma treatment

-

Page/Page column 11; 16-17, (2021/10/20)

The present invention relates to a method of preparing an aromatic compound from acetylene, which includes synthesizing an aromatic compound from an acetylene-containing reactant gas in the presence of a zeolite catalyst for the aromatization of acetylene, and subjecting the zeolite catalyst deactivated by the coke formed in the aromatization of acetylene, to plasma treatment at ambient temperature and pressure so as to selectively remove the external cokes and partial internal coke, thereby regenerating the zeolite catalyst; a method of regenerating the zeolite catalyst used in the aromatization of acetylene by plasma treatment; and a regenerated zeolite catalyst for the aromatization of acetylene, prepared thereof.

METHOD TO PRODUCE C4 OLEFINS FROM NATURAL GAS-DERIVED ACETYLENE

-

Paragraph 0015; 0016; 0019; 0020; 0248, (2021/10/22)

In accordance with the purpose(s) of the present disclosure, as embodied and broadly described herein, the disclosure relates to a method for producing C4 olefins from acetylene using supported metal-based catalysts and metal-based promoters. The method is inexpensive, efficient, and environmentally sound. Additionally, the method is selective for C4 olefins and other value-added products based on changes to reaction parameters including temperature, feed gas composition, and promoter identity. This abstract is intended as a scanning tool for purposes of searching in the particular art and is not intended to be limiting of the present disclosure.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 174973-66-1