20452-78-2Relevant articles and documents
An Intramolecular Iodine-Catalyzed C(sp3)?H Oxidation as a Versatile Tool for the Synthesis of Tetrahydrofurans
Br?se, Stefan,Koch, Vanessa
supporting information, p. 3478 - 3483 (2021/07/22)
The formation of ubiquitous occurring tetrahydrofuran patterns has been extensively investigated in the 1960s as it was one of the first examples of a non-directed remote C?H activation. These approaches suffer from the use of toxic transition metals in overstoichiometric amounts. An attractive metal-free solution for transforming carbon-hydrogen bonds into carbon-oxygen bonds lies in applying economically and ecologically favorable iodine reagents. The presented method involves an intertwined catalytic cycle of a radical chain reaction and an iodine(I/III) redox couple by selectively activating a remote C(sp3)?H bond under visible-light irradiation. The reaction proceeds under mild reaction conditions, is operationally simple and tolerates many functional groups giving fast and easy access to different substituted tetrahydrofurans.
A Proton-Responsive Pyridyl(benzamide)-Functionalized NHC Ligand on Ir Complex for Alkylation of Ketones and Secondary Alcohols
Kaur, Mandeep,U Din Reshi, Noor,Patra, Kamaless,Bhattacherya, Arindom,Kunnikuruvan, Sooraj,Bera, Jitendra K.
supporting information, p. 10737 - 10748 (2021/06/15)
A Cp*Ir(III) complex (1) of a newly designed ligand L1 featuring a proton-responsive pyridyl(benzamide) appended on N-heterocyclic carbene (NHC) has been synthesized. The molecular structure of 1 reveals a dearomatized form of the ligand. The protonation of 1 with HBF4 in tetrahydrofuran gives the corresponding aromatized complex [Cp*Ir(L1H)Cl]BF4 (2). Both compounds are characterized spectroscopically and by X-ray crystallography. The protonation of 1 with acid is examined by 1H NMR and UV-vis spectra. The proton-responsive character of 1 is exploited for catalyzing α-alkylation of ketones and β-alkylation of secondary alcohols using primary alcohols as alkylating agents through hydrogen-borrowing methodology. Compound 1 is an effective catalyst for these reactions and exhibits a superior activity in comparison to a structurally similar iridium complex [Cp*Ir(L2)Cl]PF6 (3) lacking a proton-responsive pendant amide moiety. The catalytic alkylation is characterized by a wide substrate scope, low catalyst and base loadings, and a short reaction time. The catalytic efficacy of 1 is also demonstrated for the syntheses of quinoline and lactone derivatives via acceptorless dehydrogenation, and selective alkylation of two steroids, pregnenolone and testosterone. Detailed mechanistic investigations and DFT calculations substantiate the role of the proton-responsive ligand in the hydrogen-borrowing process.
Switchable β-alkylation of secondary alcohols with primary alcohols by a well-defined cobalt catalyst
Ding, Keying,Pandey, Bedraj,Xu, Shi
supporting information, p. 1207 - 1212 (2021/05/29)
β-alkylation of secondary alcohols with primary alcohols to selectively generate alcohols by a well-defined Co catalyst is presented. Remarkably, a low catalyst loading of 0.7 mol % can be employed for the reaction. More significantly, this study represents the first Co-catalyzed switchable alcohol/ketone synthesis by simply manipulating the reaction parameters. In addition, the transformation is environmentally friendly, with water as the only byproduct.
Chromium-Catalyzed Linear-Selective Alkylation of Aldehydes with Alkenes
Hirao, Yuki,Kanai, Motomu,Katayama, Yuri,Mitsunuma, Harunobu
supporting information, (2020/11/18)
We developed a chromium-catalyzed, photochemical, and linear-selective alkylation of aldehydes with alkylzirconium species generated in situ from a wide range of alkenes and Schwartz's reagent. Photochemical homolysis of the C-Zr bond afforded alkyl radicals, which were then trapped by a chromium complex catalyst to generate the alkylchromium(III) species for polar addition to aldehydes. The reaction proceeded with high functional group tolerance at ambient temperature under visible-light irradiation.
C-Alkylation of Secondary Alcohols by Primary Alcohols through Manganese-Catalyzed Double Hydrogen Autotransfer
El-Sepelgy, Osama,Matador, Esteban,Brzozowska, Aleksandra,Rueping, Magnus
, p. 3099 - 3102 (2018/09/27)
A new Mn-catalyzed alkylation of secondary alcohols with non-activated alcohols is presented. The use of a stable and well-defined manganese pincer complex, stabilized by a PNN ligand, together with a catalytic amount of base enabled the conversion of renewable alcohol feedstocks to a broad range of higher-value alcohols in good yields with water as the sole byproduct. The strategy eliminates the need for exogenous and detrimental alkyl halides as well as the use of noble metal catalysts, making the C-alkylation through double hydrogen autotransfer a highly sustainable and environmentally benign process. Mechanistic investigations support a hydrogen autotransfer mechanism in which a non-innocent ligand plays a crucial role.
Manganese-Catalyzed β-Alkylation of Secondary Alcohols with Primary Alcohols under Phosphine-Free Conditions
Liu, Tingting,Wang, Liandi,Wu, Kaikai,Yu, Zhengkun
, p. 7201 - 7207 (2018/07/21)
Manganese(I) complexes bearing a pyridyl-supported pyrazolyl-imidazolyl ligand efficiently catalyzed the direct β-alkylation of secondary alcohols with primary alcohols under phosphine-free conditions. The β-alkylated secondary alcohols were obtained in moderate to good yields with water formed as the byproduct through a borrowing hydrogen pathway. β-Alkylation of cholesterols was also effectively achieved. The present protocol provides a concise atom-economical method for C-C bond formation from primary and secondary alcohols.
Ruthenium phosphine-pyridone catalyzed cross-coupling of alcohols to form α-alkylated ketones
Sahoo, Apurba R.,Lalitha, Gummidi,Murugesh,Bruneau, Christian,Sharma, Gangavaram V.M.,Suresh, Surisetti,Achard, Mathieu
, p. 10727 - 10731 (2018/05/31)
An efficient and green route to access diverse functionalized ketones via dehydrogenative-dehydrative cross-coupling of primary and secondary alcohols is demonstrated. Selective and tunable formation of ketones or alcohols is catalyzed by a recently developed proton responsive ruthenium phosphine-pyridone complex. Light alcohols such as ethanol could be used as alkylating agents in this methodology. Moreover, selective tandem double alkylation of isopropanol is achieved by sequential addition of different alcohols.
Regioselective Hydrohydroxyalkylation of Styrene with Primary Alcohols or Aldehydes via Ruthenium-Catalyzed C?C Bond Forming Transfer Hydrogenation
Xiao, Hongde,Wang, Gang,Krische, Michael J.
supporting information, p. 16119 - 16122 (2016/12/26)
Transfer hydrogenative coupling of styrene with primary alcohols using the precatalyst HClRu(CO)(PCy3)2modified by AgOTf or HBF4delivers branched or linear adducts from benzylic or aliphatic alcohols, respectively. Related
Ruthenium(III)-Catalyzed β-Alkylation of Secondary Alcohols with Primary Alcohols
Wang, Qingfu,Wu, Kaikai,Yu, Zhengkun
, p. 1251 - 1256 (2016/06/01)
A Ru(III)-NNN complex bearing a pyridyl-supported pyrazolyl-imidazolyl ligand was synthesized and utilized as the catalyst for the direct β-alkylation of secondary alcohols with primary alcohols. β-Alkylated secondary alcohols were obtained in moderate to high yields with water formed as the byproduct through a hydrogen borrowing pathway. The present protocol provides a concise atom-economical and environmentally benign method for C-C bond formation.
Catalyst-free dehydrative α-alkylation of ketones with alcohols: Green and selective autocatalyzed synthesis of alcohols and ketones
Xu, Qing,Chen, Jianhui,Tian, Haiwen,Yuan, Xueqin,Li, Shuangyan,Zhou, Chongkuan,Liu, Jianping
, p. 225 - 229 (2014/01/17)
Direct dehydrative α-alkylation reactions of ketones with alcohols are now realized under simple, practical, and green conditions without using external catalysts. These catalyst-free autocatalyzed alkylation methods can efficiently afford useful alkylated ketone or alcohol products in a one-pot manner and on a large scale by Ci£C bond formation of the in situ generated intermediates with subsequent controllable and selective Meerwein-Pondorf-Verley-Oppenauer-type redox processes. Plain and simple: The title reaction has been realized under simple and practical conditions without using external catalysts, and can afford alkylated ketone or alcohol products in a one-pot manner and on a large scale. The reaction proceeds by Ci£C bond formation of the in situ generated intermediates with subsequent controllable and selective Meerwein-Pondorf-Verley-Oppenauer-type redox processes. Copyright