23145-88-2Relevant articles and documents
Synthesis and evaluation of paeonol derivatives as potential multifunctional agents for the treatment of alzheimer's disease
Zhou, An,Wu, Hongfei,Pan, Jian,Wang, Xuncui,Li, Jiaming,Wu, Zeyu,Hui, Ailing
, p. 1304 - 1318 (2015)
(A.H.); Alzheimer's disease (AD) is a progressive neurodegenerative brain disorder characterized by memory loss, language impairment, personality changes and intellectual decline. Taking into account the key pathological features of AD, such as low levels of acetylcholine, beta-amyloid (Aβ) aggregation, oxidative stress and dyshomeostasis of biometals, a new series of paeonol derivatives 5a-5d merging three different functions, i.e., antioxidant, anti-acetylcholinesterase (AChE) activity, metal chelating agents for AD treatment have been synthesized and characterized. Biological assays revealed that compared with paeonol (309.7 μM), 5a-5d had a lower DPPH IC50 value (142.8-191.6 μM). 5a-5d could significantly inhibit hydrogen peroxide-induced neuronal PC12 cell death assessed by MTT assay in the concentration range of 5-40 μM. AChE activity was effectively inhibited by 5a-5d, with IC50 values in the range of 0.61-7.04 μM. 5a-5d also exhibited good metal-chelating ability. All the above results suggested that paeonol derivatives may be promising multifunctional agents for AD treatment.
Synthesis and evaluation of aryl substituted propyl piperazines for potential atypical antipsychotic activity
Singh, Shalu,Bali, Alka,Peshin, Tania
, p. 429 - 441 (2021/03/26)
Background: Schizophrenia is a disorder with complex etiology with hyperdopaminer-gia as the leading underlying cause. Atypical antipsychotics are the agents which do not give rise to significant extrapyramidal side effects and are more effective against negative symptoms of schizophrenia. Introduction: A new series of chloro-substituted substituted aryloxypiperazine derivatives and their indole based derivatives was designed and evaluated for atypical antipsychotic activity based on established models for combined dopaminergic and serotonergic antagonism. Method: The present series of compounds were designed based on 3D similarity studies, synthesized and evaluated for atypical antipsychotic activity in animal models for combined dopaminer-gic and serotonergic antagonism. The blood-brain barrier penetration potential was assessed from theoretical log BB values computed through an online software program. Results: Theoretical ADME profiling of the designed compounds based on selected physicochem-ical parameters suggested excellent compliance with Lipinski’s rules. The log BB values obtained for the compounds suggested a good potential for brain permeation. Indole substitution contributed towards an improved efficacy over aryloxy analogs. Lead compounds showed a potential for combined dopaminergic and serotonergic antagonism. Conclusion: The 5-methoxy indole based compounds 16 and 17 were identified as the lead compounds displaying a potential atypical antipsychotic profile.
Discovery of Novel Apigenin-Piperazine Hybrids as Potent and Selective Poly (ADP-Ribose) Polymerase-1 (PARP-1) Inhibitors for the Treatment of Cancer
Long, Huan,Hu, Xiaolong,Wang, Baolin,Wang, Quan,Wang, Rong,Liu, Shumeng,Xiong, Fei,Jiang, Zhenzhou,Zhang, Xiao-Qi,Ye, Wen-Cai,Wang, Hao
, p. 12089 - 12108 (2021/09/06)
Poly (ADP-ribose) polymerase-1 (PARP-1) is a potential target for the discovery of chemosensitizers and anticancer drugs. Amentoflavone (AMF) is reported to be a selective PARP-1 inhibitor. Here, structural modifications and trimming of AMF have led to a series of AMF derivatives (9a-h) and apigenin-piperazine/piperidine hybrids (14a-p, 15a-p, 17a-h, and 19a-f), respectively. Among these compounds, 15l exhibited a potent PARP-1 inhibitory effect (IC50 = 14.7 nM) and possessed high selectivity to PARP-1 over PARP-2 (61.2-fold). Molecular dynamics simulation and the cellular thermal shift assay revealed that 15l directly bound to the PARP-1 structure. In in vitro and in vivo studies, 15l showed a potent chemotherapy sensitizing effect against A549 cells and a selective cytotoxic effect toward SK-OV-3 cells through PARP-1 inhibition. 15l·2HCl also displayed good ADME characteristics, pharmacokinetic parameters, and a desirable safety margin. These findings demonstrated that 15l·2HCl may serve as a lead compound for chemosensitizers and the (BRCA-1)-deficient cancer therapy.
Further SAR studies on natural template based neuroprotective molecules for the treatment of Alzheimer's disease
Singh, Yash Pal,Shankar, Gauri,Jahan, Shagufta,Singh, Gourav,Kumar, Navneet,Barik, Atanu,Upadhyay, Prabhat,Singh, Lovejit,Kamble, Kajal,Singh, Gireesh Kumar,Tiwari, Sanjay,Garg, Prabha,Gupta, Sarika,Modi, Gyan
, (2021/09/04)
In our earlier paper, we described ferulic acid (FA) template based novel series of multifunctional cholinesterase (ChE) inhibitors for the management of AD. This report has further extended the structure–activity relationship (SAR) studies of this series of molecules in a calibrated manner to improve upon the ChEs inhibition and antioxidant property to identify the novel potent multifunctional molecules. To investigate the effect of replacement of phenylpiperazine ring with benzylpiperazine, increase in the linker length between FA and substituted phenyl ring, and replacement of indole moiety with tryptamine on this molecular template, three series of novel molecules were developed. All synthesized compounds were tested for their acetyl and butyryl cholinestrases (AChE and BChE) inhibitory properties. Enzyme inhibition and PAS binding studies identified compound 13b as a lead molecule with potent inhibitor property towards AChE/BChE (AChE IC50 = 0.96 ± 0.14 μM, BChE IC50 = 1.23 ± 0.23 μM) compared to earlier identified lead molecule EJMC-G (AChE IC50 = 5.74 ± 0.13 μM, BChE IC50 = 14.05 ± 0.10 μM, respectively). Molecular docking and dynamics studies revealed that 13b fits well into the active sites of AChE and BChE, forming stable and strong interactions with key residues Trp86, Ser125, Glu202, Trp 286, Phe295, Tyr 337 in AChE, and with Trp 82, Gly115, Tyr128, and Ser287 in BChE. The compound, 13b was found to be three times more potent antioxidant in a DPPH assay (IC50 = 20.25 ± 0.26 μM) over the earlier identified EJMC-B (IC50 = 61.98 ± 0.30 μM) and it also was able to chelate iron. Co-treatment of 13b with H2O2, significantly attenuated and reversed H2O2-induced toxicity in the SH-SY5Y cells. The parallel artificial membrane permeability assay-blood brain barrier (PAMPA-BBB) revealed that 13b could cross BBB efficiently. Finally, the in-vivo efficacy of 13b at dose of 10 mg/kg in scopolamine AD model has been demonstrated. The present study strongly suggests that the naturally inspired multifunctional molecule 13b may behave as a potential novel therapeutic agent for AD management.
Design, synthesis, and evaluation of genipin derivatives for the treatment of Alzheimer's Disease
Huang, Weijun,Wang, Yujun,Li, Jiaming,Zhang, Yanchun,Ma, Xiaodong,Zhu, Panhu,Zhang, Yang
, p. 110 - 122 (2018/12/11)
Twenty-two novel genipin derivatives have been designed, synthesized, and evaluated for their inhibitory activity against acetylcholinesterase (AChE). As a result, compound 13a bearing ligustrazine moiety displayed the most potent AChE inhibitory activity in this series with IC50 value of 218?nm. Besides, MTT assay was performed to investigate the neuroprotection of these compounds against PC12 cells injured by Amyloid β-protein 1–42 (Aβ1–42). Among them, 8a showed higher inhibition rate (%Inhibition?=?22.29) than the positive reference Donepezil (%Inhibition?=?17.65).
The synthesis and biological evaluation of novel gardenamide A derivatives as multifunctional neuroprotective agents
Zhang, Zuzhi,Wang, Yujun,Zhang, Yanchun,Li, Jiaming,Huang, Weijun,Wang, Lei
, p. 1180 - 1186 (2019/07/25)
A novel series of gardenamide A derivatives was synthesized as potential anti-Alzheimer's disease agents. The neuroprotective effects of these multifunctional agents against oxygen-glucose deprivation (OGD)-induced neurotoxicity in rat cortical neurons, and hydrogen peroxide (H2O2)- A nd amyloid-β1-42 (Aβ1-42)-induced neurotoxicity in rat hippocampal neurons were evaluated. In vitro studies revealed that these compounds demonstrated moderate to good multifunctional neuroprotective activity. Among the entire series, compounds 10e, 10j, 10n and 10p appeared to be the most active multifunctional neuroprotective agents. Studies indicate that compounds 10e, 10f, 10h, 10i, 10j, 10n and 10p exhibit significant activities against OGD-induced neurotoxicity in rat cortical neurons, and 10e, 10j, 10n and 10p show prominent activities against H2O2- A nd Aβ1-42-induced neurotoxicity in rat hippocampal neurons. Moreover, these derivatives did not exert conspicuous neurotoxicity in rat cortical neurons. Thus, the present study evidently shows that 10e, 10j, 10n and 10p are potent multifunctional neuroprotective agents, which may serve as promising lead candidates for anti-Alzheimer's disease drug development.
New potent antifungal triazole alcohols containing N-benzylpiperazine carbodithioate moiety: Synthesis, in vitro evaluation and in silico study
Mahmoudi, Yaser,Badali, Hamid,Hashemi, Seyedeh Mahdieh,Ansari, Mahsa,Fakhim, Hamed,Fallah, Marjan,Shokrzadeh, Mohammad,Emami, Saeed
, (2019/06/24)
A number of 1H-1,2,4-triazole alcohols containing N-(halobenzyl)piperazine carbodithioate moiety have been designed and synthesized as potent antifungal agents. In vitro bioassays against different Candida species including C. albicans, C. glabrata, C. parapsilosis, C. krusei, and C. tropicalis revealed that the N-(4-chlorobenzyl) derivative (6b) with MIC values of 0.063–0.5 μg/mL had the best profile of activity, being 4–32 times more potent than fluconazole. Docking simulation studies confirmed the better fitting of compound 6b in the active site of lanosterol 14α-demethylase (CYP51) enzyme, the main target of azole antifungals. Particularly, the potential of compound 6b against fluconazole-resistant isolates along with its minimal toxicity against human erythrocytes and HepG2 cells make this prototype compound as a good lead for discovery of potent and safe antifungal agents.
Development of 2-amino-4-phenylthiazole analogues to disrupt myeloid differentiation factor 88 and prevent inflammatory responses in acute lung injury
Chen, Lingfeng,Chen, Hongjin,Chen, Pengqin,Zhang, Wenxin,Wu, Chao,Sun, Chuchu,Luo, Wu,Zheng, Lulu,Liu, Zhiguo,Liang, Guang
, p. 22 - 38 (2018/10/23)
Myeloid differentiation primary response protein 88 (MyD88), an essential adapter protein used by toll-like receptors (TLR), is a promising target molecule for the treatment of respiratory inflammatory diseases. Previous studies explored the activities of novel 2-amino-4-phenylthiazole analogue (6) in inflammation-induced cancer, and identified the analogue as an inhibitor of MyD88 toll/interleukin-1 receptor (TIR) homology domain dimerization. Here, we describe the synthesis of 47 new analogues by modifying different sites on this lead compound and assessed their anti-inflammatory activities in lipopolysaccharide-induced mouse primary peritoneal macrophages (MPMs). The most promising compound, 15d, was found to effectively interact with MyD88 protein and prevented formation of the MyD88 homodimeric complex. Furthermore, 15d showed in vivo anti-inflammatory activity in LPS-caused model of acute lung injury. This work provides new candidates as MyD88 inhibitors to combat inflammation diseases.
Sulfonamides incorporating piperazine bioisosteres as potent human carbonic anhydrase I, II, IV and IX inhibitors
Chiaramonte, Niccolò,Bua, Silvia,Angeli, Andrea,Ferraroni,Picchioni, Ilaria,Bartolucci, Gianluca,Braconi,Dei, Silvia,Teodori, Elisabetta,Supuran, Claudiu T.,Romanelli, Maria Novella
, (2019/08/01)
Starting from the molecular simplification of (R) 4-(3,4-dibenzylpiperazine-1-carbonyl)benzenesulfonamide 9a, a compound endowed with selectivity for human Carbonic Anhydrase (hCA) IV, a series of piperazines and 4-aminopiperidines carrying a 4-sulfamoylb
Design, synthesis and neuroprotective activities of novel cinnamide derivatives containing benzylpiperazine moiety
Zhong, Yan,Li, Xiaofeng,Zhang, Aixia,Xu, Yi,Li, Ping,Wu, Bin
, p. 1366 - 1373 (2018/02/28)
A new series of cinnamide derivatives 6a–l were synthesized by the reaction of acyl chlorides with various substituted benzylpiperazines. The structures were characterized by 1H NMR, 13C NMR, and HRMS. The potential neuroprotective activities of cinnamide analogs were evaluated in differentiated rat pheochromocytoma cells (PC12 cells) and in mice subjected to acute cerebral ischemia. Among the series, 6a, 6b, and 6c, featuring a 1,3-benzodioxole moiety, showed potent neuroprotection both in vivo and in vitro. The three compounds were selected and further studied to determine their mechanism of action. MTT assay, Hoechst 33342/PI double staining, and high content screening (HCS) revealed that pretreatment of the cells with 6a, 6b, and 6c has significantly decreased the extent of cell apoptosis in a dose-dependent manner. The results of western blot analysis demonstrated these compounds suppressed apoptosis of glutamate-induced PC12 cells via caspase-3 pathway. These compounds can be lead compounds for further discovery of neuroprotective agents for treating cerebral ischemic stroke.