24318-43-2Relevant articles and documents
Dual utility of a single diphosphine-ruthenium complex: A precursor for new complexes and, a pre-catalyst for transfer-hydrogenation and Oppenauer oxidation
Mukherjee, Aparajita,Bhattacharya, Samaresh
, p. 15617 - 15631 (2021/05/19)
The diphosphine-ruthenium complex, [Ru(dppbz)(CO)2Cl2] (dppbz = 1,2-bis(diphenylphosphino)benzene), where the two carbonyls are mutually cis and the two chlorides are trans, has been found to serve as an efficient precursor for the synthesis of new complexes. In [Ru(dppbz)(CO)2Cl2] one of the two carbonyls undergoes facile displacement by neutral monodentate ligands (L) to afford complexes of the type [Ru(dppbz)(CO)(L)Cl2] (L = acetonitrile, 4-picoline and dimethyl sulfoxide). Both the carbonyls in [Ru(dppbz)(CO)2Cl2] are displaced on reaction with another equivalent of dppbz to afford [Ru(dppbz)2Cl2]. The two carbonyls and the two chlorides in [Ru(dppbz)(CO)2Cl2] could be displaced together by chelating mono-anionic bidentate ligands, viz. anions derived from 8-hydroxyquinoline (Hq) and 2-picolinic acid (Hpic) via loss of a proton, to afford the mixed-tris complexes [Ru(dppbz)(q)2] and [Ru(dppbz)(pic)2], respectively. The molecular structures of four selected complexes, viz. [Ru(dppbz)(CO)(dmso)Cl2], [Ru(dppbz)2Cl2], [Ru(dppbz)(q)2] and [Ru(dppbz)(pic)2], have been determined by X-ray crystallography. In dichloromethane solution, all the complexes show intense absorptions in the visible and ultraviolet regions. Cyclic voltammetry on the complexes shows redox responses within 0.71 to -1.24 V vs. SCE. [Ru(dppbz)(CO)2Cl2] has been found to serve as an excellent pre-catalyst for catalytic transfer-hydrogenation and Oppenauer oxidation.
A rutheniumcis-dihydride with 2-phosphinophosphinine ligands catalyses the acceptorless dehydrogenation of benzyl alcohol
Andresen, John M.,Delve, Matthew P.,Luz, Christian,Mansell, Stephen M.,Newland, Robert J.,Trodden, Elizabeth C.
supporting information, p. 13407 - 13411 (2021/10/12)
The first ruthenium dihydride complex featuring a phosphinine ligandcis-[Ru(H)2(2-PPh2-3-Me-6-SiMe3-PC5H2)2] was synthesised exclusively as thecis-isomer. When formedin situfrom the reaction ofcis-[Ru(Cl)2(2-PPh2-3-Me-6-SiMe3-PC5H2)2] with two equivalents of Na[BHEt3], as demonstrated by31P and1H NMR spectroscopy, the catalysed acceptorless dehydrogenation of benzyl alcohol was observed leading to benzyl benzoate in up to 70% yield.
Sodium organoaluminate containing bidentate pyrrolyl ligand: Synthesis, structure, and catalytic activity for the Tishchenko reaction
Liu, Yu,Guo, Zhiqiang,Wang, Yakong
, (2021/05/26)
An novel sodium organoaluminate containing bidentate pyrrolyl ligand [C4H3NH(2-CH2NHtBu)] was efficiently synthesized and characterized by X-ray crystallography. The molecular structure shows it is a monodimensional infinite chain structures with linear arrangements. Its basic repeat unit comprises the Al atom bonded to two deprotonated pyrrole rings and Na atom coordinated to of nitrogen atoms of –NtBu fragment, which undergoes further to coordinates a pyrrolyl ring of an adjacent molecule in a ?2-fasion. Furthermore, this sodium organoaluminate exhibited high catalytic activities for Tishchenko reaction.
Discriminating non-ylidic carbon-sulfur bond cleavages of sulfonium ylides for alkylation and arylation reactions
Cai, Lei,Chen, Qi,Fang, Jing,Li, Ting,Liao, Zhiwen,Ma, Xiang,Meng, Lingkui,Sun, Jiuchang,Wan, Qian,Zeng, Jing
supporting information, (2021/07/25)
A sulfonium ylide participated alkylation and arylation under transition-metal free conditions is described. The disparate reaction pattern allowed the separate activation of non-ylidic S-alkyl and S-aryl bond. Under acidic conditions, sulfonium ylides serve as alkyl cation precursors which facilitate the alkylations. While under alkaline conditions, cleavage of non-ylidic S-aryl bond produces O-arylated compounds efficiently. The robustness of the protocols were established by the excellent compatibility of wide variety of substrates including carbohydrates.
Disproportionation of aliphatic and aromatic aldehydes through Cannizzaro, Tishchenko, and Meerwein–Ponndorf–Verley reactions
Sharifi, Sina,Sharifi, Hannah,Koza, Darrell,Aminkhani, Ali
, p. 803 - 808 (2021/07/20)
Disproportionation of aldehydes through Cannizzaro, Tishchenko, and Meerwein–Ponndorf–Verley reactions often requires the application of high temperatures, equimolar or excess quantities of strong bases, and is mostly limited to the aldehydes with no CH2 or CH3 adjacent to the carbonyl group. Herein, we developed an efficient, mild, and multifunctional catalytic system consisting AlCl3/Et3N in CH2Cl2, that can selectively convert a wide range of not only aliphatic, but also aromatic aldehydes to the corresponding alcohols, acids, and dimerized esters at room temperature, and in high yields, without formation of the side products that are generally observed. We have also shown that higher AlCl3 content favors the reaction towards Cannizzaro reaction, yet lower content favors Tishchenko reaction. Moreover, the presence of hydride donor alcohols in the reaction mixture completely directs the reaction towards the Meerwein–Ponndorf–Verley reaction. Graphic abstract: [Figure not available: see fulltext.].
Iodine-catalyzed synthesis of β-uramino crotonic esters as well as oxidative esterification of carboxylic acids in choline chloride/urea: a desirable alternative to organic solvents
Moayyed, Mohammadesmaeil,Saberi, Dariush
, p. 445 - 455 (2020/09/07)
Abstract: Iodine-mediated selective synthesis of β-uramino crotonic esters was achieved via the reaction of β-dicarbonyls and urea at room temperature. Choline chloride/urea mixture, as an eco-friendly, cheap, non-toxic, and recyclable deep eutectic solvent (DES), was employed as sustainable media as well as reagent at the same time in these transformations. Some derivatives of β-uramino crotonic esters were synthesized with good to high yields without a tedious work-up. The process could be done to synthesize the above-mentioned compounds in gram scale. Moreover, oxidative cross-esterification of carboxylic acids with alkyl benzenes was carried out in the above-mentioned DES by the employment of tetrabutylammonium iodide (TBAI) as the catalyst and tert-butyl hydroperoxide (TBHP) as the oxidant at 80?°C. DES/TBAI system was reused up to five consecutive times. Graphic abstract: Iodine-catalyzed C–N and C–O bond formation in choline chloride/urea as a green solvent under the mild reaction conditions. Providing the clean procedure toward synthesis of β-uramino crotonic esters and benzylic esters.[Figure not available: see fulltext.].
N-Heterocyclic Carbene Catalyzed Ester Synthesis from Organic Halides through Incorporation of Oxygen Atoms from Air
Tan, Hui,Wang, Shen-An,Yan, Zixi,Liu, Jianzhong,Wei, Jialiang,Song, Song,Jiao, Ning
supporting information, p. 2140 - 2144 (2020/12/01)
Oxygenation reactions with molecular oxygen (O2) as the oxygen source provides a green and straightforward strategy for the construction of O-containing compounds. Demonstrated here is a novel N-heterocyclic carbene (NHC) catalyzed oxidative transformation of simple and readily available organic halides into valuable esters through the incorporation of O-atoms from O2. Mechanistic studies prove that the deoxy Breslow intermediate generated in situ is oxidized to a Breslow intermediate for further transformation by this oxidative protocol. This method broadens the field of NHC catalysis and promotes oxygenation reactions with O2.
Thermally regulated molybdate-based ionic liquids toward molecular oxygen activation for one-pot oxidative cascade catalysis
Song, Zhibin,Huang, Wei,Zhou, Yan,Tian, Zi-Qi,Li, Zhang-Min,Tao, Duan-Jian
supporting information, p. 103 - 109 (2020/01/21)
One-pot oxidative cascade catalysis plays a central role in the synthesis of key pharmaceutical and industrial molecules. Although ionic liquids are one of the most promising solvents and reaction media, the breakthrough of their catalysis in aerobic oxidation is very challenging due to the difficulty in the direct activation of molecular oxygen. Herein, a family of novel thermally regulated molybdate-based ionic liquids (Mo-ILs) has been designed and developed for the first time toward molecular oxygen activation for highly efficient tandem oxidative catalysis. Three diverse one-pot oxidative cascade processes for the syntheses of various flavones, imines, and benzyl benzoates were achieved with good to excellent yields using the Mo-IL [Bmim]2[MoO4] as a catalyst under air conditions. The results of spectroscopic investigations and quantum-chemical calculations further demonstrated that a thermally regulated proton migration between the cation [Bmim] and anion [MoO4] was the key to forming N-heterocyclic carbene and thereby to effortlessly promoting the generation of O2- active species from molecular oxygen, which results in excellent catalytic performance in these three aerobic tandem oxidations. Our work extends the application area of ILs as the sole catalyst to one-pot aerobic oxidative cascade catalysis, which could have pronounced implications in future work.
Aldehyde effect and ligand discovery in Ru-catalyzed dehydrogenative cross-coupling of alcohols to esters
Jiang, Xiaolin,Zhang, Jiahui,Zhao, Dongmei,Li, Yuehui
, p. 2797 - 2800 (2019/03/27)
The presence of different aldehydes is found to have a significant influence on the catalytic performance when using PN(H)P type ligands for dehydrogenation of alcohols. Accordingly, hybrid multi-dentate ligands were discovered based on an oxygen-transfer alkylation of PNP ligands by aldehydes. The relevant Ru-PNN(PO) system provided the desired unsymmetrical esters in good yields via acceptorless dehydrogenation of alcohols. Hydrogen bonding interactions between the phosphine oxide moieties and alcohol substrates likely assisted the observed high chemoselectivity.
Synthesis of Unsymmetrical N-Heterocyclic Carbene-Nitrogen-Phosphine Chelated Ruthenium(II) Complexes and Their Reactivity in Acceptorless Dehydrogenative Coupling of Alcohols to Esters
He, Xiaochun,Li, Yaqiu,Fu, Haiyan,Zheng, Xueli,Chen, Hua,Li, Ruixiang,Yu, Xiaojun
, p. 1750 - 1760 (2019/04/17)
Two novel ruthenium complexes RuH(CO)Cl(PPh3)(κ2-CP) (1) and [fac-RuH(CO)(PPh3)(κ3-CNP)]Cl (2) bearing unsymmetrical N-heterocyclic carbene-nitrogen-phosphine (CNP) were synthesized and characterized with 1H NMR, 31P NMR, and HRMS. The structure of complex 2 was further confirmed by single-crystal X-ray diffraction. An anion exchange experiment proved that complex 2 could transform into complex 1 in solution. The two complexes exhibited a highly catalytic performance in acceptorless dehydrogenative coupling of alcohols to esters, and the excellent isolated yields of esters were given in a catalyst loading of 1% for para- and meta-substituted benzyl alcohols and long-chain primary alcohols. Although some ortho-substituted benzyl alcohols displayed a relatively low reactivity due to the steric hindrance and the coordination of electron donor with the ruthenium center, the good product yields were still obtained by prolonging the reaction time. Especially, this system successfully realized the dehydrogenative cross-coupling to esters between two different primary alcohols.