Welcome to LookChem.com Sign In|Join Free

CAS

  • or

5405-95-8

Post Buying Request

5405-95-8 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

5405-95-8 Usage

Check Digit Verification of cas no

The CAS Registry Mumber 5405-95-8 includes 7 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 4 digits, 5,4,0 and 5 respectively; the second part has 2 digits, 9 and 5 respectively.
Calculate Digit Verification of CAS Registry Number 5405-95:
(6*5)+(5*4)+(4*0)+(3*5)+(2*9)+(1*5)=88
88 % 10 = 8
So 5405-95-8 is a valid CAS Registry Number.

5405-95-8SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 17, 2017

Revision Date: Aug 17, 2017

1.Identification

1.1 GHS Product identifier

Product name 1-methoxy-4-[(4-methoxyphenyl)methoxymethyl]benzene

1.2 Other means of identification

Product number -
Other names 4,4'-dimethoxydibenzyl ether

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:5405-95-8 SDS

5405-95-8Relevant articles and documents

Zwitterion-induced organic-metal hybrid catalysis in aerobic oxidation

Hu, Rong-Bin,Lam, Ying-Pong,Ng, Wing-Hin,Wong, Chun-Yuen,Yeung, Ying-Yeung

, p. 3498 - 3506 (2021/04/07)

In many metal catalyses, the traditional strategy of removing chloride ions is to add silver salts via anion exchange to obtain highly active catalysts. Herein, we reported an alternative strategy of removing chloride anions from ruthenium trichloride using an organic [P+-N-] zwitterionic compound via multiple hydrogen bond interactions. The resultant organic-metal hybrid catalytic system has successfully been applied to the aerobic oxidation of alcohols, tetrahydroquinolines, and indolines under mild conditions. The performance of zwitterion is far superior to that of many other common Lewis bases or Br?nsted bases. Mechanistic studies revealed that the zwitterion triggers the dissociation of chloride from ruthenium trichloride via nonclassical hydrogen bond interaction. Preliminary studies show that the zwitterion is applicable to catalytic transfer semi-hydrogenation.

Aryl Boronic Acid Catalysed Dehydrative Substitution of Benzylic Alcohols for C?O Bond Formation

Estopi?á-Durán, Susana,Donnelly, Liam J.,Mclean, Euan B.,Hockin, Bryony M.,Slawin, Alexandra M. Z.,Taylor, James E.

, p. 3950 - 3956 (2019/02/16)

A combination of pentafluorophenylboronic acid and oxalic acid catalyses the dehydrative substitution of benzylic alcohols with a second alcohol to form new C?O bonds. This method has been applied to the intermolecular substitution of benzylic alcohols to form symmetrical ethers, intramolecular cyclisations of diols to form aryl-substituted tetrahydrofuran and tetrahydropyran derivatives, and intermolecular crossed-etherification reactions between two different alcohols. Mechanistic control experiments have identified a potential catalytic intermediate formed between the aryl boronic acid and oxalic acid.

Iodine-catalyzed transformation of aryl-substituted alcohols under solvent-free and highly concentrated reaction conditions

Jereb, Marjan,Vra?i?, Dejan

, p. 747 - 762 (2018/01/17)

Iodine-catalyzed transformations of alcohols under solvent-free reaction conditions (SFRC) and under highly concentrated reaction conditions (HCRC) in the presence of various solvents were studied in order to gain insight into the behavior of the reaction intermediates under these conditions. Dimerization, dehydration and substitution were the three types of transformations observed with benzylic alcohols. Dimerization and substitution reactions were predominant in the case of primary- and secondary alcohols, whereas dehydration prevailed in the case of tertiary alcohols. The relative reactivity of substituted 1-phenylethanols in I2-catalyzed dimerization under SFRC provided a good Hammett plot ρ+ = -2.8 (r2 = 0.98), suggesting the presence of electron-deficient intermediates with a certain degree of developed charge in the rate-determining step.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 5405-95-8