3435-51-6Relevant articles and documents
Spacer group-controlled luminescence and response of C 3-symmetric triphenylamine derivatives towards force stimuli
Han, Yanning,Zhang, Tong,Chen, Xinyu,Chen, Qiao,Xue, Pengchong
, p. 202 - 209 (2021)
Two C3-symmetric triphenylamine derivatives with three terminal cyano units as electron acceptors were prepared to investigate the effect of the spacer group on their photophysical properties and responses towards force. Their electronic transitions were carefully studied by electrochemistry, solvent-dependent spectroscopy and quantum chemical calculations. The results suggested that introducing a double bond between the donor and acceptor results in the longer absorption and emission wavelengths of TPAVCN owing to elevated HOMO and lowered LUMO energy levels and induces a larger excited state dipole moment because of the extended conjugated length. In polar solvents, both TPACN and TPAVCN possessed a longer emission wavelength. Theoretical calculations suggested that bathochromic shifts in emission bands could be ascribed to the large polar excited states owing to the light excitation-induced intramolecular charge transfer. Moreover, TPAVCN had a larger charge transfer length and average degree of the spatial extension of hole and electron distribution because of its longer molecular length. In crystals, TPAVCN had a longer emission wavelength relative to that of TPACN. Moreover, both compounds could reversibly change their fluorescence under force and solvent annealing stimuli, and their mechanochromic properties were regulated by spacer groups. TPACN changed its fluorescence from blue to cyan with a spectral shift of 12 nm after grinding, but a large spectral shift of 30 nm, and an obvious fluorescent color change from green to yellow were observed while grinding pristine TPAVCN solids.
Tertiary arsine ligands for the Stille coupling reaction
Chishiro, Akane,Imoto, Hiroaki,Inaba, Ryoto,Konishi, Masafumi,Naka, Kensuke,Yumura, Takashi
, p. 95 - 103 (2021/12/27)
The Stille coupling reaction is one of the most important coupling reactions. It is well known that the triphenylarsine ligand can accelerate the reaction rate of Stille coupling. However, other arsine ligands have never been investigated for the Stille c
Nickel-Catalyzed Reductive Cross-Coupling of Aryl Bromides with Vinyl Acetate in Dimethyl Isosorbide as a Sustainable Solvent
Su, Mincong,Huang, Xia,Lei, Chuanhu,Jin, Jian
supporting information, p. 354 - 358 (2022/01/15)
A nickel-catalyzed reductive cross-coupling has been achieved using (hetero)aryl bromides and vinyl acetate as the coupling partners. This mild, applicable method provides a reliable access to a variety of vinyl arenes, heteroarenes, and benzoheterocycles, which should expand the chemical space of precursors to fine chemicals and polymers. Importantly, a sustainable solvent, dimethyl isosorbide, is used, making this protocol more attractive from the point of view of green chemistry.
Recoverable palladium-catalyzed carbon-carbon bond forming reactions under thermomorphic mode: Stille and suzuki-miyaura reactions
Chan, Ka Long,Chiu, Chiao-Fan,Elakkat, Vijayanath,Lu, Norman,Shen, Chia-Rui,Su, Han-Chang,Tessema, Eskedar,Tsai, Zong-Lin
, (2021/05/31)
The reaction of [PdCl2(CH3CN)2] and bis-4,40-(RfCH2OCH2)-2,2'-bpy (1a-d), where Rf = n- C11F23 (a), n-C10F21 (b), n-C9F19 (c) and n-C8F17 (d), respectively, in the presence of dichloromethane (CH2Cl2) resulted in the synthesis of Pd complex, [PdCl2[4,4'-bis-(RfCH2OCH2)-2,2'-bpy] (2a-d). The Pd-catalyzed Stille arylations of vinyl tributyltin with aryl halides were selected to demonstrate the feasibility of recycling usage with 2a as the catalyst using NMP (N-methyl-2-pyrrolidone) as the solvent at 120-150 °C. Additionally, recycling and electronic effect studies of 2a-c were also carried out for Suzuki-Miyaura reaction of phenylboronic acid derivatives, 4-X-C6H4-B(OH)2, (X = H or Ph) with aryl halide, 4-Y-C6H4-Z, (Y = CN, H or OCH3; Z = I or Br) in dimethylformamide (DMF) at 135-150 °C. At the end of each cycle, the product mixtures were cooled to lower temperature (e.g., -10 °C), and then catalysts were recovered by decantation with Pd leaching less than 1%. The products were quantified by gas chromatography/mass spectrometry (GC/MS) analysis or by the isolated yield. The complex 2a-catalyzed Stille reaction of aryl iodides with vinyl tributyltin have good recycling results for a total of 8 times, with a high yield within short period of time (1-3 h). Similarly, 2a-c-catalyzed Suzuki-Miyaura reactions also have good recycling results. The electronic effect studies from substituents in both Stille and Suzuki-Miyaura coupling reactions showed that electron withdrawing groups speed up the reaction rate. To our knowledge, this is the first example of recoverable fluorous long-chained Pd-catalyzed Stille reactions under the thermomorphic mode.
Highly selective semi-hydrogenation of alkynes with a Pd nanocatalyst modified with sulfide-based solid-phase ligands
Huang, Lingqi,Hu, Kecheng,Ye, Ganggang,Ye, Zhibin
, (2021/03/30)
Soluble small molecular/polymeric ligands are often used in Pd-catalyzed semi-hydrogenation of alkynes as an efficient strategy to improve the selectivity of targeted alkene products. The use of soluble ligands requires their thorough removal from the reaction products, which adds significant extra costs. In the paper, commercially available, inexpensive, metallic sulfide-based solid-phase ligands (SPL8-4 and SPL8-6) are demonstrated as simple yet high-performance insoluble ligands for a heterogeneous Pd nanocatalyst (Pd@CaCO3) toward the semi-hydrogenation of alkynes. Based on the reactions with a range of terminal and internal alkyne substrates, the use of the solid-phase ligands has been shown to markedly enhance the selectivity of the desired alkene products by efficiently suppressing over-hydrogenation and isomerization side reactions, even during the long extension of the reactions following full substrate conversion. A proper increase in the dosage or a reduction in the average size of the solid-phase ligands enhances such effects. With their insoluble nature, the solid-phase ligands have the distinct advantage in their simple, convenient recycling and reuse while without contaminating the products. A ten-cycle reusability test with the SPL8-4/Pd@CaCO3 catalyst system confirms its well-maintained activity and selectivity over repeated uses. A mechanistic study with x-ray photoelectron spectroscopy indicates that the solid-phase ligands have electronic interactions with Pd in the supported catalyst, contributing to inhibit the binding and further reaction of the alkene products. This is the first demonstration of solid-phase ligands for highly selective semi-hydrogenation of alkynes, which show strong promise for commercial applications.
Nickel-Catalyzed Ligand-Free Hiyama Coupling of Aryl Bromides and Vinyltrimethoxysilane
Wei, Shichao,Mao, Yongjun,Shi, Shi-Liang
supporting information, p. 1670 - 1674 (2021/02/26)
We herein disclose the first Ni-catalyzed Hiyama coupling of aryl halides with vinylsilanes. This protocol uses cheap, nontoxic, and stable vinyltrimethoxysilane as the vinyl donor, proceeds under mild and ligand-free conditions, furnishing a diverse variety of styrene derivatives in high yields with excellent functional group compatibility.
Nickel-Catalyzed Reversible Functional Group Metathesis between Aryl Nitriles and Aryl Thioethers
Delcaillau, Tristan,Boehm, Philip,Morandi, Bill
, p. 3723 - 3728 (2021/04/07)
We describe a new functional group metathesis between aryl nitriles and aryl thioethers. The catalytic system nickel/dcype is essential to achieve this fully reversible transformation in good to excellent yields. Furthermore, the cyanide- and thiol-free reaction shows high functional group tolerance and great efficiency for the late-stage derivatization of commercial molecules. Finally, synthetic applications demonstrate its versatility and utility in multistep synthesis.
KO-t-Bu Catalyzed Thiolation of β-(Hetero)arylethyl Ethers via MeOH Elimination/hydrothiolation
Shigeno, Masanori,Shishido, Yoshiteru,Hayashi, Kazutoshi,Nozawa-Kumada, Kanako,Kondo, Yoshinori
supporting information, p. 3932 - 3935 (2021/08/24)
Herein, we describe a KO-t-Bu catalyzed thiolation of β-(hetero)arylethyl ethers through MeOH elimination to form (hetero)arylalkenes followed by anti-Markovnikov hydrothiolation to afford linear thioethers. The system works well with a variety of β-(hetero)arylethyl ethers, including electron-deficient, electron-neutral, electron-rich, and branched substrates and a range of aliphatic and aromatic thiols.
Nickel-Catalyzed Cyanation of Aryl Thioethers
Delcaillau, Tristan,Woenckhaus-Alvarez, Adrian,Morandi, Bill
supporting information, p. 7018 - 7022 (2021/09/13)
A nickel-catalyzed cyanation of aryl thioethers using Zn(CN)2 as a cyanide source has been developed to access functionalized aryl nitriles. The ligand dcype (1,2-bis(dicyclohexylphosphino)ethane) in combination with the base KOAc (potassium acetate) is essential for achieving this transformation efficiently. This reaction involves both a C-S bond activation and a C-C bond formation. The scalability, low catalyst and reagents loadings, and high functional group tolerance have enabled both late-stage derivatization and polymer recycling, demonstrating the reaction's utility across organic chemistry.
Exploring the nitro group reduction in low-solubility oligo-phenylenevinylene systems: Rapid synthesis of amino derivatives
Acelas, Mauricio,Sierra, Andrés Felipe,Sierra, César A.
supporting information, p. 1335 - 1352 (2020/03/04)
A small series of amino oligo-phenylenevinylenes (OPVs) were successfully synthesized from their nitro-analogs in a rapid, simple, and highly efficient fashion employing a sodium sulfide/pyridine system as a reducing agent. In this research, classic and sustainable reduction methodologies including NH4HCO2/Zn and a choline chloride/tin (II) chloride deep eutectic solvent (DES) were also evaluated, showing degradation products, incomplete reactivity, and product isolation difficulties in all cases. The straightforward Na2S/pyridine synthetic protocol proved to maintain the E-E stereochemistry of the OPV backbone that has been previously assembled by the Mizoroki–Heck cross-coupling reaction. Also, the optoelectronic properties were determined and discussed, considering the amino group insertion in these conjugated systems as a contribution for future construction of novel materials with applications in supramolecular electronics, light harvesting, and photocatalysis.