3717-28-0Relevant articles and documents
Design and synthesis of sinomenine isoxazole derivatives via 1,3-dipolar cycloaddition reaction
Pan, Hongmei,Lu, Tong,Wu, Xuedan,Gu, Chengwen,Tao, Naili,Zhang, Biao,Wang, Ao,Chen, Guangmei,Zhang, Kehua,Cheng, Jie,Jin, Jie
supporting information, p. 2360 - 2364 (2019/11/11)
A novel structure of sinomenine isoxazole derivatives is synthesised from sinomenine hydrochloride and aromatic aldehydes and requires six steps. 19 target compounds have been obtained in good yields. The sinomenine hydrochloride transforms to 4-alkynyl sinomenine, which is a key intermediate product to synthesise the target sinomenine isoxazole compounds, after a neutralisation reaction with ammonia and substitution reaction with 3-chloropropyne. Another key intermediate product is 1,3-dipole, which can be obtained from aromatic aldehyde. After treatment with hydroxylamine hydrochloride and then sodium carbonate solution, aromatic aldehyde is converted to aldehyde oxime, which reacts with N-chlorosuccinimide (NCS) to afford aryl hydroximino chloride. 1,3-Dipole is eventually formed in situ while triethylamine (TEA) in DMF is added dropwise. Then 4-alkynyl sinomenine is added to provide the sinomenine isoxazole derivative via 1,3-dipolar cycloaddition reaction as the key step. All the target compounds are characterised by melting point, 1H NMR, 13C NMR, HRMS and FT-IR spectroscopy.
Dibenzazepine-linked isoxazoles: New and potent class of α-glucosidase inhibitors
Umm-E-Farwa,Ullah, Saeed,Khan, Maria Aqeel,Zafar, Humaira,Atia-tul-Wahab,Younus, Munisaa,Choudhary, M. Iqbal,Basha, Fatima Z.
supporting information, (2021/05/10)
α-Glucosidase inhibition is a valid approach for controlling hyperglycemia in diabetes. In the current study, new molecules as a hybrid of isoxazole and dibenzazepine scaffolds were designed, based on their literature as antidiabetic agents. For this, a series of dibenzazepine-linked isoxazoles (33–54) was prepared using Nitrile oxide-Alkyne cycloaddition (NOAC) reaction, and evaluated for their α-glucosidase inhibitory activities to explore new hits for treatment of diabetes. Most of the compounds showed potent inhibitory potency against α-glucosidase (EC 3.2.1.20) enzyme (IC50 = 35.62 ± 1.48 to 333.30 ± 1.67 μM) using acarbose as a reference drug (IC50 = 875.75 ± 2.08 μM). Structure-activity relationship, kinetics and molecular docking studies of active isoxazoles were also determined to study enzyme-inhibitor interactions. Compounds 33, 40, 41, 46, 48–50, and 54 showed binding interactions with critical amino acid residues of α-glucosidase enzyme, such as Lys156, Ser157, Asp242, and Gln353.
One pot synthesis of aryl nitriles from aromatic aldehydes in a water environment
Chen, Qingqing,Han, Hongwei,Lin, Hongyan,Ma, Xiaopeng,Qi, Jinliang,Wang, Xiaoming,Yang, Yonghua,Zhou, Ziling
, p. 24232 - 24237 (2021/07/29)
In this study, we found a green method to obtain aryl nitriles from aromatic aldehyde in water. This simple process was modified from a conventional method. Compared with those approaches, we used water as the solvent instead of harmful chemical reagents. In this one-pot conversion, we got twenty-five aryl nitriles conveniently with pollution to the environment being minimized. Furthermore, we confirmed the reaction mechanism by capturing the intermediates, aldoximes.
AN IMPROVED PROCESS FOR PREPARATION OF PURE ALDOXIME
-
Page/Page column 15-16, (2021/06/22)
The present invention relates to an improved process for preparing aldoximes of formula (I) with high purity and high yield. The improved process for preparing aldoxime is fast, simple, highly efficient, and reproducible. The improved process for the preparation of aldoxime, which is synthesized in the higher yield under oximation reaction of aldehyde with hydroxylamine hydrochloride merely in aqueous medium using of in situ heat generation.
On the mixed oxides-supported niobium catalyst towards benzylamine oxidation
Granato, álisson Silva,de Carvalho, Gustavo S. Gon?alves,Fonseca, Carla G.,Adrio, Javier,Leit?o, Alexandre A.,Amarante, Giovanni Wilson
, p. 118 - 125 (2020/09/11)
A series of mixed oxides-supported niobium-based catalysts has been synthesized and applied towards oxidation reactions of benzylamine derivatives. Under the optimized reaction conditions, the selectivity to oxime enhanced, leading to the main product with up to 72 %. Moreover, even α-substituted benzylamines were well tolerated and led to oximes in good isolated yields. It is important to mention; four equivalents of the harmless and inexpensive hydrogen peroxide were employed as oxidizing agent. Mechanism hypothesis suggested that the reaction proceed to selective benzylamine oxidation into nitroso intermediate, following by formation of the corresponding oxime tautomer mediated by an unstable water produced by NbOx supported catalyst. This consists the first mixed oxides-supported niobium-based catalyst for selective oxidation of benzylamines to oximes.
Water mediated procedure for preparation of stereoselective oximes as inhibitors of MRCK kinase
Luqman, Suaib,Misra, Krishna,Pandey, Jyoti,Shrivash, Manoj Kumar,Shukla, Akhilesh Kumar,Singh, Shilipi
, (2020/07/08)
Stereoselective aldoximes, preferably Z form have been obtained from α-cyano substituted carbonyl conjugated alkenes. This reaction occurs through Michael addition type reaction followed by retro-Knoevenagel reaction without transition-metal catalysis via C–C bond cleavage. These oximes are evaluated against cancer cell lines employing mechanistic study. Two oximes showed significant cytotoxic activity, which through in silico studies were found to inhibit MRCK Kinase, responsible for metastatic spread of cancer mortality.
Design and Structural Optimization of Dual FXR/PPARδActivators
Schierle, Simone,Neumann, Sebastian,Heitel, Pascal,Willems, Sabine,Kaiser, Astrid,Pollinger, Julius,Merk, Daniel
supporting information, p. 8369 - 8379 (2020/08/12)
Nonalcoholic steatohepatitis (NASH) is considered as severe hepatic manifestation of the metabolic syndrome and has alarming global prevalence. The ligand-activated transcription factors farnesoid X receptor (FXR) and peroxisome proliferator-activated receptor (PPAR) δhave been validated as molecular targets to counter NASH. To achieve robust therapeutic efficacy in this multifactorial pathology, combined peripheral PPAR?-mediated activity and hepatic effects of FXR activation appear as a promising multitarget approach. We have designed a minimal dual FXR/PPARδactivator scaffold by rational fusion of pharmacophores derived from selective agonists. Our dual agonist lead compound exhibited weak agonism on FXR and PPARδand was structurally refined to a potent and balanced FXR/PPARδactivator in a computer-aided fashion. The resulting dual FXR/PPARδmodulator comprises high selectivity over related nuclear receptors and activates the two target transcription factors in native cellular settings.
Synthesis and SAR study of simple aryl oximes and nitrofuranyl derivatives with potent activity against Mycobacterium tuberculosis
Calixto, Stephane Lima,Carvalho, Guilherme da Silva Louren?o,Coimbra, Elaine Soares,Granato, Juliana da Trindade,Louren?o, Maria Cristina da Silva,Wardell, James,da Costa, Cristiane Fran?a,de Souza, Marcus Vinicius Nora
, p. 12 - 20 (2020/02/06)
Background: Oximes and nitrofuranyl derivatives are particularly important compounds in medicinal chemistry. Thus, many researchers have been reported to possess antibacterial, antiparasitic, insecticidal and fungicidal activities. Methods: In this work, we report the synthesis and the biological activity against Mycobacterium tuberculosis H37RV of a series of fifty aryl oximes, ArCH=N-OH, I, and eight nitrofuranyl compounds, 2-nitrofuranyl-X, II. Results: Among the oximes, I: Ar = 2-OH-4-OH, 42, and I: Ar = 5-nitrofuranyl, 46, possessed the best activity at 3.74 and 32.0 μM, respectively. Also, 46, the nitrofuran compounds, II; X = MeO, 55, and II: X = NHCH2Ph, 58, (14.6 and 12.6 μM, respectively), exhibited excellent biological activities and were non-cytotoxic. Conclusion: The compound 55 showed a selectivity index of 9.85. Further antibacterial tests were performed with compound 55 which was inactive against Enterococcus faecalis, Klebisiella pneumonae, Pseudomonas aeruginosa, Staphylococcus aureus, Salmonella typhymurium and Shigel-la flexneri. This study adds important information to the rational design of new lead anti-TB drugs. Structure-activity Relationship (SAR) is reported.
Adhesive functionalized ascorbic acid on CoFe2O4: A core-shell nanomagnetic heterostructure for the synthesis of aldoximes and amines
Sorkhabi, Serve,Ghadermazi, Mohammad,Mozafari, Roya
, p. 41336 - 41352 (2020/11/30)
This paper reports on the simple synthesis of novel green magnetic nanoparticles (MNPs) with effective catalytic properties and reusability. These heterogeneous nanocatalysts were prepared by the anchoring of Co and V on the surface of CoFe2O4 nanoparticles coated with ascorbic acid (AA) as a green linker. The prepared nanocatalysts have been identified by scanning electron microscopy, transmission electron microscopy, energy-dispersive X-ray spectroscopy, X-ray atomic mapping, thermogravimetric analysis, X-ray powder diffraction, vibrating sample magnetometer analysis, coupled plasma optical emission spectrometry and Fourier transform infrared spectroscopy. The impact of CoFe2O4@AA-M (Co, V) was carefully examined for NH2OH·HCl oximation of aldehyde derivatives first and then for the reduction of diverse nitro compounds with sodium borohydride (NaBH4) to the corresponding amines under green conditions. The catalytic efficiency of magnetic CoFe2O4@AA-M (Co, V) nanocatalysts was investigated in production of different aldoximes and amines with high turnover numbers (TON) and turnover frequencies (TOF) through oximation and reduction reactions respectively. Furthermore, the developed environment-friendly method offers a number of advantages such as high turnover frequency, mild reaction conditions, high activity, simple procedure, low cost and easy isolation of the products from the reaction mixture by an external magnetic field and the catalyst can be reused for several consecutive runs without any remarkable decrease in catalytic efficiency.
A Synergic Activity of Urea/Butyl Imidazolium Ionic Liquid Supported on UiO-66-NH2 Metal–Organic Framework for Synthesis of Oximes
Askari, Saeed,Jafarzadeh, Mohammad,Christensen, David Benjamin,Kegn?s, S?ren
, p. 3159 - 3173 (2020/04/21)
An efficient supported ionic liquid catalyst is designed for condensation reaction of aldehydes and ketones. The Zr-based metal–organic framework (MOF), UiO-66-NH2, was initially functionalized with N,N′-dibutyl imidazolium ionic liquid (UiO-66-NH2-ILBr–), and then urea was attached to the ionic liquid (IL) to form a task-specific IL. Bromide was exchanged with tetrafluoroborate and the catalyst exhibits excellent performance for the synthesis of oximes. The ionic liquid/urea coupling showed a synergistic effect on the efficiency of the reaction. The supported catalyst system was recycled simply by filtration and reused for five times without significant decrease in its activity. The catalyst was characterized with PXRD, FTIR, TGA, XPS, BET, FE-SEM, EDS, elemental mapping and elemental analysis (CHN). Graphic Abstract: MOF/IL/urea catalytic system was used for the synthesis of oximes[Figure not available: see fulltext.].