38612-16-7Relevant articles and documents
Hydrogen-bond-assisted transition-metal-free catalytic transformation of amides to esters
Huang, Changyu,Li, Jinpeng,Wang, Jiaquan,Zheng, Qingshu,Li, Zhenhua,Tu, Tao
, p. 66 - 71 (2020/11/18)
The amide C-N cleavage has drawn a broad interest in synthetic chemistry, biological process and pharmaceutical industry. Transition-metal, luxury ligand or excess base were always vital to the transformation. Here, we developed a transition-metal-free hydrogen-bond-assisted esterification of amides with only catalytic amount of base. The proposed crucial role of hydrogen bonding for assisting esterification was supported by control experiments, density functional theory (DFT) calculations and kinetic studies. Besides broad substrate scopes and excellent functional groups tolerance, this base-catalyzed protocol complements the conventional transition-metal-catalyzed esterification of amides and provides a new pathway to catalytic cleavage of amide C-N bonds for organic synthesis and pharmaceutical industry. [Figure not available: see fulltext.]
Synthesis, characterization and catalytic performances of benzimidazolin-2-iminato actinide (IV) complexes in the Tishchenko reactions for symmetrical and unsymmetrical esters
Liu, Heng,Khononov, Maxim,Fridman, Natalia,Tamm, Matthias,Eisen, Moris S.
, p. 123 - 137 (2017/10/25)
A new family of benzimdazolin-2-iminato actinide?(IV) complexes [(Bim7-MeDipp/MeN)An(N(SiMe3)2)3] (An = U (3), Th (4)) and [(Bim4-MeDipp/MeN)An(N(SiMe3)2)3] (An = U (5), Th (6)) were synthesized and their solid state structures were established by single-crystal X-ray diffraction analysis. The catalytic performances of complexes 3–6 towards the homo- and cross-coupling of aldehydes (Tishchenko reaction) were studied and the thorium complexes 4 and 6 displayed moderate to high activities for the production of the corresponding symmetric and unsymmetrical esters. Coupling of aldehyde and alcohols, known as the tandem proton-transfer esterification, and the intermolecular coupling reaction between aldehyde and trifluoromethylketones were also investigated by these thorium complexes, indicating a complementary method to obtain unsymmetrical esters selectively. Plausible mechanisms for these reactions are proposed based on stoichiometric studies.
Comprehensive Study of the Organic-Solvent-Free CDI-Mediated Acylation of Various Nucleophiles by Mechanochemistry
Mtro, Thomas-Xavier,Bonnamour, Julien,Reidon, Thomas,Duprez, Anthony,Sarpoulet, Jordi,Martinez, Jean,Lamaty, Frdric
supporting information, p. 12787 - 12796 (2015/09/01)
Acylation reactions are ubiquitous in the synthesis of natural products and biologically active compounds. Unfortunately, these reactions often require the use of large quantities of volatile and/or toxic solvents, either for the reaction, purification or isolation of the products. Herein we describe and discuss the possibility of completely eliminating the use of organic solvents for the synthesis, purification and isolation of products resulting from the acylation of amines and other nucleophiles. Thus, utilisation of N,N′-carbonyldiimidazole (CDI) allows efficient coupling between carboxylic acids and various nucleophiles under solvent-free mechanical agitation, and water-assisted grinding enables both the purification and isolation of pure products. Critical parameters such as the physical state and water solubility of the products, milling material, type of agitation (vibratory or planetary) as well as contamination from wear are analysed and discussed. In addition, original organic-solvent-free conditions are proposed to overcome the limitations of this approach. The calculations of various green metrics are included, highlighting the particularly low environmental impact of this strategy.
Inhibitory effects of benzyl benzoate and its derivatives on angiotensin II-induced hypertension
Ohno, Osamu,Ye, Mao,Koyama, Tomoyuki,Yazawa, Kazunaga,Mura, Emi,Matsumoto, Hiroshi,Ichino, Takao,Yamada, Kaoru,Nakamura, Kazuhiko,Ohno, Tomohiro,Yamaguchi, Kohji,Ishida, Junji,Fukamizu, Akiyoshi,Uemura, Daisuke
experimental part, p. 7843 - 7852 (2009/04/11)
Hypertension is a lifestyle-related disease which often leads to serious conditions such as heart disease and cerebral hemorrhage. Angiotensin II (Ang II) plays an important role in regulating cardiovascular homeostasis. Consequently, antagonists that block the interaction of Ang II with its receptors are thought to be effective in the suppression of hypertension. In this study, we searched for plant compounds that had antagonist-like activity toward Ang II receptors. From among 435 plant samples, we found that EtOH extract from the resin of sweet gum Liquidambar styraciflua strongly inhibited Ang II signaling. We isolated benzyl benzoate and benzyl cinnamate from this extract and found that those compounds inhibited the function of Ang II in a dose-dependent manner without cytotoxicity. An in vivo study showed that benzyl benzoate significantly suppressed Ang II-induced hypertension in mice. In addition, we synthesized more than 40 derivatives of benzyl benzoate and found that the meta-methyl and 3-methylbenzyl 2′-nitrobenzoate derivatives showed about 10-fold higher activity than benzyl benzoate itself. Thus, benzyl benzoate, its derivatives, and benzyl cinnamate may be useful for reducing hypertension.
Efficient and selective conversion of trimethylsilyl and tetrahydropyranyl ethers to their corresponding acetates and benzoates catalyzed by bismuth(III) salts
Mohammadpoor-Baltork, Iraj,Khosropour, Ahmad R.
, p. 189 - 193 (2007/10/03)
A variety of TMS and THP ethers are efficiently converted to their corresponding acetates and benzoates with acetic and benzoic anhydrides in the presence of catalytic amounts of Bi(III) salts such as BiCl3, Bi(TFA)3, and Bi(OTf)sub