513-49-5Relevant articles and documents
Simultaneous Preparation of (S)-2-Aminobutane and d -Alanine or d -Homoalanine via Biocatalytic Transamination at High Substrate Concentration
Li, Jianjiong,Wang, Yingang,Wu, Qiaqing,Yao, Peiyuan,Yu, Shanshan,Zhu, Dunming
supporting information, (2022/03/01)
(S)-2-Aminobutane, d-alanine, and d-homoalanine are important intermediates for the production of various active pharmaceutical ingredients and food additives. The preparation of these small chiral amine or amino acids with high water solubility still demands searching for efficient methods. In this work, we identified an ω-transaminase (ω-TA) from Sinirhodobacter hungdaonensis (ShdTA) that catalyzed the kinetic resolution of racemic 2-aminobutane at a concentration of 800 mM using pyruvate as the amino acceptor, leading to the simultaneous isolation of enantiopure (S)-2-aminobutane and d-alanine in 46% and 90% yield, respectively. In addition, (S)-2-aminobutane (98% ee) and d-homoalanine (99% ee) were isolated in 45% and 93% yield, respectively, in the kinetic resolution of racemic 2-aminobutane at a concentration of 400 mM coupled with deamination of l-threonine by threonine deaminase. We thus developed a biocatalytic process for the practical synthesis of these valuable small chiral amine and d-amino acids.
Synthesis of Chiral Amines via a Bi-Enzymatic Cascade Using an Ene-Reductase and Amine Dehydrogenase
Fossey-Jouenne, Aurélie,Jongkind, Ewald P. J.,Mayol, Ombeline,Paul, Caroline E.,Vergne-Vaxelaire, Carine,Zaparucha, Anne
, (2021/12/23)
Access to chiral amines with more than one stereocentre remains challenging, although an increasing number of methods are emerging. Here we developed a proof-of-concept bi-enzymatic cascade, consisting of an ene reductase and amine dehydrogenase (AmDH), to afford chiral diastereomerically enriched amines in one pot. The asymmetric reduction of unsaturated ketones and aldehydes by ene reductases from the Old Yellow Enzyme family (OYE) was adapted to reaction conditions for the reductive amination by amine dehydrogenases. By studying the substrate profiles of both reported biocatalysts, thirteen unsaturated carbonyl substrates were assayed against the best duo OYE/AmDH. Low (5 %) to high (97 %) conversion rates were obtained with enantiomeric and diastereomeric excess of up to 99 %. We expect our established bi-enzymatic cascade to allow access to chiral amines with both high enantiomeric and diastereomeric excess from varying alkene substrates depending on the combination of enzymes.
Ruthenium Catalyzed Direct Asymmetric Reductive Amination of Simple Aliphatic Ketones Using Ammonium Iodide and Hydrogen
Ernst, Martin,Ghosh, Tamal,Hashmi, A. Stephen K.,Schaub, Thomas
supporting information, (2020/07/14)
The direct conversion of ketones into chiral primary amines is a key transformation in chemistry. Here, we present a ruthenium catalyzed asymmetric reductive amination (ARA) of purely aliphatic ketones with good yields and moderate enantioselectivity: up to 99 percent yield and 74 percent ee. The strategy involves [Ru(PPh3)3H(CO)Cl] in combination with the ligand (S,S)-f-binaphane as the catalyst, NH4I as the amine source and H2 as the reductant. This is a straightforward and user-friendly process to access industrially relevant chiral aliphatic primary amines. Although the enantioselectivity with this approach is only moderate, to the extent of our knowledge, the maximum ee of 74 percent achieved with this system is the highest reported till now apart from enzyme catalysis for the direct transformation of ketones into chiral aliphatic primary amines.
Deracemization of Racemic Amines to Enantiopure (R)- and (S)-amines by Biocatalytic Cascade Employing ω-Transaminase and Amine Dehydrogenase
Yoon, Sanghan,Patil, Mahesh D.,Sarak, Sharad,Jeon, Hyunwoo,Kim, Geon-Hee,Khobragade, Taresh P.,Sung, Sihyong,Yun, Hyungdon
, p. 1898 - 1902 (2019/02/27)
A one-pot deracemization strategy for α-chiral amines is reported involving an enantioselective deamination to the corresponding ketone followed by a stereoselective amination by enantiocomplementary biocatalysts. Notably, this cascade employing a ω-transaminase and amine dehydrogenase enabled the access to both (R)-and (S)-amine products, just by controlling the directions of the reactions catalyzed by them. A wide range of (R)-and (S)-amines was obtained with excellent conversions (>80 %) and enantiomeric excess (>99 % ee). Finally, preparative scale syntheses led to obtain enantiopure (R)- and (S)-13 with the isolated yields of 53 and 75 %, respectively.
Identification of novel thermostable ω-transaminase and its application for enzymatic synthesis of chiral amines at high temperature
Mathew, Sam,Deepankumar, Kanagavel,Shin, Giyoung,Hong, Eun Young,Kim, Byung-Gee,Chung, Taeowan,Yun, Hyungdon
, p. 69257 - 69260 (2016/08/05)
A novel thermostable ω-transaminase from Thermomicrobium roseum which showed broad substrate specificity and high enantioselectivity was identified, expressed and biochemically characterized. The advantage of this enzyme to remove volatile inhibitory by-products was demonstrated by performing asymmetric synthesis and kinetic resolution at high temperature.
(R)- SELECTIVE AMINATION
-
Paragraph 0120; 0121; 0122, (2016/03/22)
The present invention relates to a method for the enzymatic synthesis of enantiomerically enriched (R)-amines of general formula [1][c] from the corresponding ketones of the general formula [1][a] by using novel transaminases. These novel transaminases are selected from two different groups: either from a group of some 20 proteins with sequences as specified herein, or from a group of proteins having transaminase activity and isolated from a microorganism selected from the group of organisms consisting of Rahnella aquatilis, Ochrobactrum anthropi, Ochrobactrum tritici, Sinorhizobium morelense, Curtobacterium pusiffium, Paecilomyces lilacinus, Microbacterium ginsengisoli, Microbacterium trichothecenolyticum, Pseudomonas citronellolis, Yersinia kristensenii, Achromobacter spanius, Achromobacter insolitus, Mycobacterium fortuitum, Mycobacterium frederiksbergense, Mycobacterium sacrum, Mycobacterium fluoranthenivorans, Burkhoideria sp., Burkhoideria tropica, Cosmospora episphaeria, and Fusarium oxysporum.
Salts of (+)-deoxycholic acid with amines: Structure, thermal stability, kinetics of salt formation, decomposition and chiral resolution
Jacobs, Ayesha,Bathori,Nassimbeni, Luigi R.,Sebogisi, Baganetsi K.
, p. 931 - 939 (2013/03/14)
(+)-Deoxycholic acid forms salts with 1-propylamine, di-n-butylamine, sec-butylamine and 3-methyl-2-butylamine. The salts were characterised using thermal analysis and single crystal X-ray diffraction. The chiral discrimination of (+)-deoxycholic acid for racemic sec-butylamine and racemic 3-methyl-2-butylamine was studied and correlated with the structural and thermal results. A mixture of (+)-deoxycholic acid and racemic sec-butylamine yielded crystals of (R)-2-butylammonium deoxycholate. (+)-Deoxycholic acid was exposed to vapours of propylamine and racemic sec-butylamine and the kinetics of absorption were determined. The kinetics of decomposition of powdered samples obtained from (+)-deoxycholic acid with di-n-butylamine and racemic sec-butylamine were investigated. Crystallisation of (+)-deoxycholic acid with racemic 3-methyl-2-butylamine resulted in crystals of (S)-3-methyl-2- butylammonium deoxycholate.
The influence of conventional heating and microwave irradiation on the resolution of (RS)-sec-butylamine catalyzed by free or immobilized lipases
Pilissa?o, Cristiane,De Oliveira Carvalho, Patri?cia,Da Grac?a Nascimento, Maria
, p. 1688 - 1697 (2013/01/15)
The lipases CAL-B, PSL, PSL-C, PSL-D, and A. niger lipase, free or immobilized in starch (obtained from two types of yam, known in Brazil as cara? (Discorea alata L.) and inhame (Colocasia esculenta (L.) Schott) or gelatin films, were used in the acylation of (RS)-sec-butylamine with different acyl donors in various organic solvents applying conventional heating (CH) or microwave (MW) irradiation. In the case of free A. niger lipase, the conversion degrees were three times higher using MW irradiation when compared to conventional heating at 35 °C. Using free A. niger lipase, the (R)-amide was obtained with a conversion degree of 21percent, resulting in eep > 99percent and E-value (enantioselectivity value) > 200, in 1 min of reaction under MW irradiation. When the A. niger lipase was immobilized in yam starch films, the (R)-amide was obtained in moderate conversions of 8-25percent after 3 or 5 min of reaction under MW irradiation, but with higher selectivity (eep > 99percent and E > 200) in comparison with the free form (conversion degree of 45percent, eep 81percent and E value of 18).
Amination of ketones by employing two new (S)-selective ω-transaminases and the his-tagged ω-TA from Vibrio fluvialis
Mutti, Francesco G.,Fuchs, Christine S.,Pressnitz, Desiree,Turrini, Nikolaus G.,Sattler, Johann H.,Lerchner, Alexandra,Skerra, Arne,Kroutil, Wolfgang
experimental part, p. 1003 - 1007 (2012/04/04)
Two recently identified (S)-selective ω-transaminases (ω-TAs) that originate from Paracoccus denitrificans (Strep-PD-ωTA, cloned with an N-terminal Strep-tag II) and Pseudomonas fluorescens (PF-ωTA) were employed for the asymmetric amination of selected prochiral ketones. The substrates tested were transformed into optically pure amines (>99 % ee) with high conversion (up to >99 %). The ω-TAs led to higher conversion in the absence of dimethyl sulfoxide as a cosolvent than in its presence (15 %, v/v). Additionally, it was shown that a His-tagged recombinant transaminase from Vibrio fluvialis (His-VF-ωTA, cloned with an N-terminal His 6-tag) showed for a single substrate, ethyl acetoacetate, significantly higher stereoselectivity for the amination compared to the corresponding commercial enzyme preparation (>99 vs. 50 %). The (S)-selective ω-transaminases (ω-TAs) from Paracoccus denitrificans and Pseudomonas fluorescens transformed various ketones into optically pure amines (>99 % ee). These enzymes extend the substrate spectrum of highly (S)-stereoselective ω-TAs. Copyright
Enzymatic racemization of amines catalyzed by enantiocomplementary ω-Transaminases
Koszelewski, Dominik,Grischek, Barbara,Glueck, Silvia M.,Kroutil, Wolfgang,Faber, Kurt
experimental part, p. 378 - 383 (2011/03/21)
A strategy for the biocatalytic racemization of primary α-chiral amines was developed by employing a pair of stereocomplementary PLP-dependent ω-transaminases. The interconversion of amine enantiomers proceeded through reversible transamination by a prochiral ketone intermediate, either catalyzed by a pair of stereocomplementary ω-transaminases or by a single enzyme possessing low stereoselectivity. To tune the system, the type and concentration of a nonchiral amino acceptor proved to be crucial. Finally, racemization could be achieved by the cross-transamination of two different amines without a requirement for an external amino acceptor. Several synthetically and industrially important amines could be enzymatically racemized under mild reaction conditions. ω-Transaminases play ping-pong: A biocatalytic protocol for the 'clean' racemization of α-chiral prim-amines was developed by an equilibrium-controlled deamination/amination sequence catalyzed by a pair of (R)- and (S)-ω-transaminases (see scheme).