52448-17-6Relevant articles and documents
An Obligate Peptidyl Brominase Underlies the Discovery of Highly Distributed Biosynthetic Gene Clusters in Marine Sponge Microbiomes
Nguyen, Nguyet A.,Lin, Zhenjian,Mohanty, Ipsita,Garg, Neha,Schmidt, Eric W.,Agarwal, Vinayak
supporting information, p. 10221 - 10231 (2021/07/26)
Marine sponges are prolific sources of bioactive natural products, several of which are produced by bacteria symbiotically associated with the sponge host. Bacteria-derived natural products, and the specialized bacterial symbionts that synthesize them, are not shared among phylogenetically distant sponge hosts. This is in contrast to nonsymbiotic culturable bacteria in which the conservation of natural products and natural product biosynthetic gene clusters (BGCs) is well established. Here, we demonstrate the widespread conservation of a BGC encoding a cryptic ribosomally synthesized and post-translationally modified peptide (RiPP) in microbiomes of phylogenetically and geographically dispersed sponges from the Pacific and Atlantic oceans. Detection of this BGC was enabled by mining for halogenating enzymes in sponge metagenomes, which, in turn, allowed for the description of a broad-spectrum regiospecific peptidyl tryptophan-6-brominase which possessed no chlorination activity. In addition, we demonstrate the cyclodehydrative installation of azoline heterocycles in proteusin RiPPs. This is the first demonstration of halogenation and cyclodehydration for proteusin RiPPs and the enzymes catalyzing these transformations were found to competently interact with other previously described proteusin substrate peptides. Within a sponge microbiome, many different generalized bacterial taxa harbored this BGC with often more than 50 copies of the BGC detected in individual sponge metagenomes. Moreover, the BGC was found in all sponges queried that possess high diversity microbiomes but it was not detected in other marine invertebrate microbiomes. These data shed light on conservation of cryptic natural product biosynthetic potential in marine sponges that was not detected by traditional natural product-to-BGC (meta)genome mining.
METHODS FOR PRODUCING D-TRYPTOPHAN AND SUBSTITUTED D-TRYPTOPHANS
-
Page/Page column 17, (2021/04/01)
Single-module nonribosomal peptide synthetases (NRPSs) and NRPS-like enzymes activate and transform carboxylic acids in both primary and secondary metabolism; and are of great interest due to their biocatalytic potentials. The single-module NRPS IvoA is essential for fungal pigment biosynthesis. As disclosed herein, we show that IvoA catalyzes ATP-dependent unidirectional stereoinversion of L-tryptophan to D-tryptophan with complete conversion. While the stereoinversion is catalyzed by the epimerization (E) domain, the terminal condensation (C) domain stereoselectively hydrolyzes D-tryptophanyl-S-phosphopantetheine thioester and thus represents a noncanonical C domain function. Using IvoA, we demonstrate a biocatalytic stereoinversion/deracemization route to access a variety of substituted D-tryptophan analogs in high enantiomeric excess.
Novel Arylindigoids by Late-Stage Derivatization of Biocatalytically Synthesized Dibromoindigo
Schnepel, Christian,Dodero, Veronica I.,Sewald, Norbert
supporting information, p. 5404 - 5411 (2021/03/03)
Indigoids represent natural product-based compounds applicable as organic semiconductors and photoresponsive materials. Yet modified indigo derivatives are difficult to access by chemical synthesis. A biocatalytic approach applying several consecutive selective C?H functionalizations was developed that selectively provides access to various indigoids: Enzymatic halogenation of l-tryptophan followed by indole generation with tryptophanase yields 5-, 6- and 7-bromoindoles. Subsequent hydroxylation using a flavin monooxygenase furnishes dibromoindigo that is derivatized by acylation. This four-step one-pot cascade gives dibromoindigo in good isolated yields. Moreover, the halogen substituent allows for late-stage diversification by cross-coupling directly performed in the crude mixture, thus enabling synthesis of a small set of 6,6’-diarylindigo derivatives. This chemoenzymatic approach provides a modular platform towards novel indigoids with attractive spectral properties.
Targeted Enzyme Engineering Unveiled Unexpected Patterns of Halogenase Stabilization
Minges, Hannah,Schnepel, Christian,B?ttcher, Dominique,Wei?, Martin S.,Spro?, Jens,Bornscheuer, Uwe T.,Sewald, Norbert
, p. 818 - 831 (2019/12/24)
Halogenases are valuable biocatalysts for selective C?H activation, but despite recent efforts to broaden their application scope by means of protein engineering, improvement of thermostability and catalytic efficiency is still desired. A directed evoluti
Synthesis of the Natural Product Iotrochamide B
Wang,Zhao,Que
, p. 499 - 501 (2019/07/02)
Iotrochamide B is the first cinnamoyl amino acid reported from the marine sponge Iotrochota sp. The total synthesis of the marine indole alkaloid iotrochamide B was achieved by condensation of 6-bromo-L-tryptophan (3) and (Z)-2-methoxy-3-phenylacrylic acid (6). The key step was the synthesis of 6-bromo-L-tryptophan ((S)-3) from racemic N-acetyltryptophan by optical resolution using (S)-(–)-1-phenylethylamine. This work provides an efficient method for future synthesis of iotrochamide B derivatives.
Biosynthesis of l-4-Chlorokynurenine, an Antidepressant Prodrug and a Non-Proteinogenic Amino Acid Found in Lipopeptide Antibiotics
Luhavaya, Hanna,Sigrist, Renata,Chekan, Jonathan R.,McKinnie, Shaun M. K.,Moore, Bradley S.
supporting information, p. 8394 - 8399 (2019/05/21)
l-4-Chlorokynurenine (l-4-Cl-Kyn) is a neuropharmaceutical drug candidate that is in development for the treatment of major depressive disorder. Recently, this amino acid was naturally found as a residue in the lipopeptide antibiotic taromycin. Herein, we report the unprecedented conversion of l-tryptophan into l-4-Cl-Kyn catalyzed by four enzymes in the taromycin biosynthetic pathway from the marine bacterium Saccharomonospora sp. CNQ-490. We used genetic, biochemical, structural, and analytical techniques to establish l-4-Cl-Kyn biosynthesis, which is initiated by the flavin-dependent tryptophan chlorinase Tar14 and its flavin reductase partner Tar15. This work revealed the first tryptophan 2,3-dioxygenase (Tar13) and kynurenine formamidase (Tar16) enzymes that are selective for chlorinated substrates. The substrate scope of Tar13, Tar14, and Tar16 was examined and revealed intriguing promiscuity, thereby opening doors for the targeted engineering of these enzymes as useful biocatalysts.
Structure-based switch of regioselectivity in the flavin-dependent tryptophan 6-halogenase Thal
Moritzer, Ann-Christin,Minges, Hannah,Prior, Tina,Frese, Marcel,Sewald, Norbert,Niemann, Hartmut H.
, p. 2529 - 2542 (2019/03/12)
Flavin-dependent halogenases increasingly attract attention as biocatalysts in organic synthesis, facilitating environmentally friendly halogenation strategies that require only FADH2, oxygen, and halide salts. Different flavin-dependent tryptophan halogenases regioselectively chlorinate or brominate tryptophan’s indole moiety at C5, C6, or C7. Here, we present the first substrate-bound structure of a tryptophan 6-halogenase, namely Thal, also known as ThdH, from the bacterium Streptomyces albogriseolus at 2.55 ? resolution. The structure revealed that the C6 of tryptophan is positioned next to the -amino group of a conserved lysine, confirming the hypothesis that proximity to the catalytic residue determines the site of electro-philic aromatic substitution. Although Thal is more similar in sequence and structure to the tryptophan 7-halogenase RebH than to the tryptophan 5-halogenase PyrH, the indole binding pose in the Thal active site more closely resembled that of PyrH than that of RebH. The difference in indole orientation between Thal and RebH appeared to be largely governed by residues positioning the Trp backbone atoms. The sequences of Thal and RebH lining the substrate binding site differ in only few residues. Therefore, we exchanged five amino acids in the Thal active site with the corresponding counterparts in RebH, generating the quintuple variant Thal-RebH5. Overall conversion of L-Trp by the Thal-RebH5 variant resembled that of WT Thal, but its regioselectivity of chlorination and bromination was almost completely switched from C6 to C7 as in RebH. We conclude that structure-based protein engineering with targeted substitution of a few residues is an efficient approach to tailoring flavin-dependent halogenases.
Complete Stereoinversion of l -Tryptophan by a Fungal Single-Module Nonribosomal Peptide Synthetase
Hai, Yang,Jenner, Matthew,Tang, Yi
supporting information, p. 16222 - 16226 (2019/10/14)
Single-module nonribosomal peptide synthetases (NRPSs) and NRPS-like enzymes activate and transform carboxylic acids in both primary and secondary metabolism and are of great interest due to their biocatalytic potentials. The single-module NRPS IvoA is essential for fungal pigment biosynthesis. Here, we show that IvoA catalyzes ATP-dependent unidirectional stereoinversion of l-tryptophan to d-tryptophan with complete conversion. While the stereoinversion is catalyzed by the epimerization (E) domain, the terminal condensation (C) domain stereoselectively hydrolyzes d-tryptophanyl-S-phosphopantetheine thioester and thus represents a noncanonical C domain function. Using IvoA, we demonstrate a biocatalytic stereoinversion/deracemization route to access a variety of substituted d-tryptophan analogs in high enantiomeric excess.
Unlocking Reactivity of TrpB: A General Biocatalytic Platform for Synthesis of Tryptophan Analogues
Romney, David K.,Murciano-Calles, Javier,Wehrmüller, J?ri E.,Arnold, Frances H.
supporting information, p. 10769 - 10776 (2017/08/15)
Derivatives of the amino acid tryptophan (Trp) serve as precursors for the chemical and biological synthesis of complex molecules with a wide range of biological properties. Trp analogues are also valuable as building blocks for medicinal chemistry and as tools for chemical biology. While the enantioselective synthesis of Trp analogues is often lengthy and requires the use of protecting groups, enzymes have the potential to synthesize such products in fewer steps and with the pristine chemo- and stereoselectivity that is a hallmark of biocatalysis. The enzyme TrpB is especially attractive because it can form Trp analogues directly from serine (Ser) and the corresponding indole analogue. However, many potentially useful substrates, including bulky or electron-deficient indoles, are poorly accepted. We have applied directed evolution to TrpB from Pyrococcus furiosus and Thermotoga maritima to generate a suite of catalysts for the synthesis of previously intractable Trp analogues. For the most challenging substrates, such as nitroindoles, the key to improving activity lay in the mutation of a universally conserved and mechanistically important residue, E104. The new catalysts express at high levels (>200 mg/L of Escherichia coli culture) and can be purified by heat treatment; they can operate up to 75 °C (where solubility is enhanced) and can synthesize enantiopure Trp analogues substituted at the 4-, 5-, 6-, and 7-positions, using Ser and readily available indole analogues as starting materials. Spectroscopic analysis shows that many of the activating mutations suppress the decomposition of the active electrophilic intermediate, an amino-acrylate, which AIDS in unlocking the synthetic potential of TrpB.
Modular Combination of Enzymatic Halogenation of Tryptophan with Suzuki-Miyaura Cross-Coupling Reactions
Frese, Marcel,Schnepel, Christian,Minges, Hannah,Vo?, Hauke,Feiner, Rebecca,Sewald, Norbert
, p. 1799 - 1803 (2016/06/01)
The combination of the biocatalytic halogenation of l-tryptophan with subsequent chemocatalytic Suzuki-Miyaura cross-coupling reactions leads to the modular synthesis of an array of C5, C6, or C7 aryl-substituted tryptophan derivatives. In a three-step one-pot reaction, the bromo substituent is initially incorporated regioselectively by immobilized tryptophan 5-, 6-, or 7-halogenases, respectively, with concomitant cofactor regeneration. The halogenation proceeds in aqueous media at room temperature in the presence of NaBr and O2. After the separation of the biocatalyst by filtration, a Pd catalyst, base, and boronic acid are added to the aryl halide formed in situ to effect direct Suzuki-Miyaura cross-coupling reactions followed by tert-butoxycarbonyl (Boc) protection. After a single purification step, different Boc-protected aryl tryptophan derivatives are obtained that can, for example, be used for peptide or peptidomimetic synthesis. Putting the pieces together: By combining the enzymatic halogenation of l-tryptophan using flavin adenine dinucleotide dependent halogenases with Pd-catalyzed Suzuki-Miyaura cross-coupling reactions in water, the C5-, C6-, or C7-position of the indole ring can be brominated regioselectively in situ and functionalized chemocatalytically in a stepwise one-pot reaction.