53439-91-1Relevant articles and documents
A One-Pot Two-Step Enzymatic Pathway for the Synthesis of Enantiomerically Enriched Vicinal Diols
Giovannini, Pier Paolo,Müller, Michel,Presini, Francesco,Baraldi, Serena,Ragno, Daniele,Di Carmine, Graziano,Jacoby, Christian,Bernacchia, Giovanni,Bortolini, Olga
, p. 973 - 978 (2021/02/01)
Enantiomerically enriched 1,2-diols are prominent compounds that find numerous applications in organic chemistry. They are privileged building blocks for the synthesis of APIs (Active Pharmaceutical Ingredients), broadly used as chiral ligands in asymmetric catalysis, and efficient auxiliaries employed to control the stereochemical outcome of total synthesis. Among the number of strategies developed for the preparation of these molecules, enzyme mediated reactions have gained a crucial role in the toolbox of organic chemists for their high efficiency and sustainability. Herein we describe a one-pot two-step protocol designed by combining a thiamine diphosphate (ThDP)-dependent lyase and a NADH-dependent reductase. The ThDP-dependent acetoin:dichlorophenolindophenol oxidoreductase (Ao : DCPIP OR) is exploited to produce enantioenriched α-hydroxyketones through the benzoin-type condensation of methylacetoin with either aldehydes or activated ketones. The enantioenriched α-hydroxyketones undergo the selective reduction into the corresponding 1,2-diols in the same reaction mixture due to the addition of NAD+ and of the NADH-dependent acetylacetoin reductase (AAR). Sodium formate was selected as the sacrificial reductive reactant to generate and recycle in situ the precious NADH by formate-dehydrogenase. Unprecedented reported details on the cloning and expression of the AAR are reported as well.
Whole-Cell Biocatalysis in Seawater: New Halotolerant Yeast Strains for the Regio- and Stereoselectivity Reduction of 1-Phenylpropane-1,2-Dione in Saline-Rich Media
Andreu, Cecilia,del Olmo, Marcellí
, p. 1621 - 1628 (2020/03/05)
The application of green chemistry concepts in catalysis has considerably increased in recent years, and the interest in using sustainable solvents in the chemical industry is growing. One of the recent proposals to fall in line with this is to employ seawater as a solvent in biocatalytic processes. This involves selecting halotolerant strains capable of carrying out chemical conversions in the presence of the salt concentrations found in this solution. Recent studies by our group have revealed the interest in using strains belonging to Debaryomyces and Schwanniomyces for catalytic processes run in this medium. In the present work, we select other yeasts based on their halotolerance to widen the scope of this strategy. We consider them for the monoreduction of 1-phenylpropane-1,2-dione, a well-characterized reaction that produces acyloin intermediates of pharmaceutical interest. The results obtained herein indicate that using seawater as a solvent for this reaction is possible. The best ones were obtained for Saccharomyces cerevisiae FY86 and Kluyveromyces marxianus, for which acyloins with different stereochemistry were obtained with good to excellent enantiomeric excess.
Synthesis of α-hydroxy ketones and vicinal (R, R)-diols by Bacillus clausii DSM 8716T butanediol dehydrogenase
Bongaerts, Johannes,Jablonski, Melanie,Kipp, Carina Ronja,Molinnus, Denise,Muschallik, Lukas,Pohl, Martina,Sch?ning, Michael J.,Selmer, Thorsten,Siegert, Petra,Wagner, Torsten
, p. 12206 - 12216 (2020/04/20)
α-hydroxy ketones (HK) and 1,2-diols are important building blocks for fine chemical synthesis. Here, we describe the R-selective 2,3-butanediol dehydrogenase from B. clausii DSM 8716T (BcBDH) that belongs to the metal-dependent medium chain dehydrogenases/reductases family (MDR) and catalyzes the selective asymmetric reduction of prochiral 1,2-diketones to the corresponding HK and, in some cases, the reduction of the same to the corresponding 1,2-diols. Aliphatic diketones, like 2,3-pentanedione, 2,3-hexanedione, 5-methyl-2,3-hexanedione, 3,4-hexanedione and 2,3-heptanedione are well transformed. In addition, surprisingly alkyl phenyl dicarbonyls, like 2-hydroxy-1-phenylpropan-1-one and phenylglyoxal are accepted, whereas their derivatives with two phenyl groups are not substrates. Supplementation of Mn2+ (1 mM) increases BcBDH's activity in biotransformations. Furthermore, the biocatalytic reduction of 5-methyl-2,3-hexanedione to mainly 5-methyl-3-hydroxy-2-hexanone with only small amounts of 5-methyl-2-hydroxy-3-hexanone within an enzyme membrane reactor is demonstrated.
Immobilized chiral rhodium nanoparticles stabilized by chiral P-ligands as efficient catalysts for the enantioselective hydrogenation of 1-phenyl-1,2-propanedione
Ruiz, Doris,M?ki-Arvela, P?ivi,Aho, Atte,Chiment?o, Ricardo,Claver, Carmen,Godard, Cyril,Fierro, José L.G.,Murzin, Dmitry Yu.
, (2019/08/26)
This work reports the efficient synthesis of enantio-enriched alcohols by asymmetric hydrogenation of 1-phenyl-1,2-propanedione using chiral nanoparticles (NPs) supported on SiO2. The chiral catalysts were synthesized by reducing the [Rh(μ?OCH3)(C8H12)]2 precursor under H2 in the presence of P-chiral ligands as stabilizers and SiO2 as support. Synthesis of catalysts in mild conditions was performed from labile organometallic precursor and chiral ligands provided small and well defined chiral nanoparticles (≤ 3 nm). The catalysts were characterized by XPS, HR-TEM, EDS, XRD and N2 physisorption isotherm. The physical chemical properties of the materials were correlated with the catalytic results obtained in the asymmetric hydrogenation of 1-phenyl-1,2-propanedione. In 1-phenyl-1,2-propanedione hydrogenation the best results using chiral catalysts allowed 98% conversion and enantiomeric excess of 67% to (R)-1-hydroxy-1-phenyl-propan-2-one and 59% for (R)-2-hydroxy-1-phenylpropan-1-one. Catalyst recycling studies revealed that chiral nanoparticles immobilized on SiO2 are stable. These catalysts do not need extra amount of chiral modifier or inducer added in situ and could be reused without loss of enantioselectivity.
Two enantiocomplementary ephedrine dehydrogenases from arthrobacter sp. TS-15 with broad substrate specificity
Shanati, Tarek,Lockie, Cameron,Beloti, Lilian,Grogan, Gideon,Ansorge-Schumacher, Marion B.
, p. 6202 - 6211 (2019/08/15)
The recently identified pseudoephedrine and ephedrine dehydrogenases (PseDH and EDH, respectively) from Arthrobacter sp. TS-15 are NADH-dependent members of the oxidoreductase superfamily of short-chain dehydrogenases/reductases (SDRs). They are specific for the enantioselective oxidation of (+)-(S) N-(pseudo)ephedrine and (-)-(R) N-(pseudo)ephedrine, respectively. Anti-Prelog stereospecific PseDH and Prelog-specific EDH catalyze the regio- A nd enantiospecific reduction of 1-phenyl-1,2-propanedione to (S)-phenylacetylcarbinol and (R)-phenylacetylcarbinol with full conversion and enantiomeric excess of >99%. Moreover, they perform the reduction of a wide range of aryl-aliphatic carbonyl compounds, including ketoamines, ketoesters, and haloketones, to the corresponding enantiopure alcohols. The highest stability of PseDH and EDH was determined to be at a pH range of 6.0-8.0 and 7.5-8.5, respectively. PseDH was more stable than EDH at 25 °C with half-lives of 279 and 38 h, respectively. However, EDH is more stable at 40 °C with a 2-fold greater half-life than at 25 °C. The crystal structure of the PseDH-NAD+ complex, refined to a resolution of 1.83 ?, revealed a tetrameric structure, which was confirmed by solution studies. A model of the active site in complex with NAD+ and 1-phenyl-1,2-propanedione suggested key roles for S143 and W152 in recognition of the substrate and positioning for the reduction reaction. The wide substrate spectrum of these dehydrogenases, combined with their regio- A nd enantioselectivity, suggests a high potential for the industrial production of valuable chiral compounds.
Structural and Mutagenesis Studies of the Thiamine-Dependent, Ketone-Accepting YerE from Pseudomonas protegens
Hampel, Sabrina,Steitz, Jan-Patrick,Baierl, Anna,Lehwald, Patrizia,Wiesli, Luzia,Richter, Michael,Fries, Alexander,Pohl, Martina,Schneider, Gunter,Dobritzsch, Doreen,Müller, Michael
, p. 2283 - 2292 (2018/10/20)
A wide range of thiamine diphosphate (ThDP)-dependent enzymes catalyze the benzoin-type carboligation of pyruvate with aldehydes. A few ThDP-dependent enzymes, such as YerE from Yersinia pseudotuberculosis (YpYerE), are known to accept ketones as acceptor substrates. Catalysis by YpYerE gives access to chiral tertiary alcohols, a group of products difficult to obtain in an enantioenriched form by other means. Hence, knowledge of the three-dimensional structure of the enzyme is crucial to identify structure–activity relationships. However, YpYerE has yet to be crystallized, despite several attempts. Herein, we show that a homologue of YpYerE, namely, PpYerE from Pseudomonas protegens (59 % amino acid identity), displays similar catalytic activity: benzaldehyde and its derivatives as well as ketones are converted into chiral 2-hydroxy ketones by using pyruvate as a donor. To enable comparison of aldehyde- and ketone-accepting enzymes and to guide site-directed mutagenesis studies, PpYerE was crystallized and its structure was determined to a resolution of 1.55 ?.
Organocatalytic Enantioselective Protonation for Photoreduction of Activated Ketones and Ketimines Induced by Visible Light
Lin, Lu,Bai, Xiangbin,Ye, Xinyi,Zhao, Xiaowei,Tan, Choon-Hong,Jiang, Zhiyong
supporting information, p. 13842 - 13846 (2017/10/24)
The first catalytic asymmetric photoreduction of 1,2-diketones and α-keto ketimines under visible light irradiation is reported. A transition-metal-free synergistic catalysis platform harnessing dicyanopyrazine-derived chromophore (DPZ) as the photoredox catalyst and a non-covalent chiral organocatalyst is effective for these transformations. With the flexible use of a chiral Br?nsted acid or base in H+ transfer interchange to control the elusive enantioselective protonation, a variety of chiral α-hydroxy ketones and α-amino ketones were obtained with high yields and enantioselectivities.
Assessing the stereoselectivity of: Serratia marcescens CECT 977 2,3-butanediol dehydrogenase
Médici, Rosario,Stammes, Hanna,Kwakernaak, Stender,Otten, Linda G.,Hanefeld, Ulf
, p. 1831 - 1837 (2017/07/15)
α-Hydroxy ketones and vicinal diols constitute well-known building blocks in organic synthesis. Here we describe one enzyme that enables the enantioselective synthesis of both building blocks starting from diketones. The enzyme 2,3-butanediol dehydrogenase (BudC) from S. marcescens CECT 977 belongs to the NADH-dependent metal-independent short-chain dehydrogenases/reductases family (SDR) and catalyses the selective asymmetric reductions of prochiral α-diketones to the corresponding α-hydroxy ketones and diols. BudC is highly active towards structurally diverse diketones in combination with nicotinamide cofactor regeneration systems. Aliphatic diketones, cyclic diketones and alkyl phenyl diketones are well accepted, whereas their derivatives possessing two bulky groups are not converted. In the reverse reaction vicinal diols are preferred over other substrates with hydroxy/keto groups in non-vicinal positions.
Asymmetric synthesis of (: S)-phenylacetylcarbinol-closing a gap in C-C bond formation
Sehl, Torsten,Bock, Saskia,Marx, Lisa,Maugeri, Zaira,Walter, Lydia,Westphal, Robert,Vogel, Constantin,Menyes, Ulf,Erhardt, Martin,Müller, Michael,Pohl, Martina,Rother, D?rte
supporting information, p. 380 - 384 (2017/08/14)
(S)-Phenylacetylcarbinol [(S)-PAC] and its derivatives are valuable intermediates for the synthesis of various active pharmaceutical ingredients (APIs), but their selective synthesis is challenging. As no highly selective enzymes or chemical catalysts were available, we used semi-rational enzyme engineering to tailor a potent biocatalyst to be >97% stereoselective for the synthesis of (S)-PAC. By optimizing the reaction and process used, industrially relevant product concentrations of >48 g L-1 (up to 320 mM) were achieved. In addition, the best enzyme variant gave access to a broad range of ring-substituted (S)-PAC derivatives with high stereoselectivity, especially for meta-substituted products.
(S)-Selectivity in Phenylacetyl Carbinol Synthesis Using the Wild-Type Enzyme Acetoin:Dichlorophenolindophenol Oxidoreductase from Bacillus licheniformis
Giovannini, Pier Paolo,Lerin, Lindomar Alberto,Müller, Michael,Bernacchia, Giovanni,Bastiani, Morena De,Catani, Martina,Di Carmine, Graziano,Massi, Alessandro
supporting information, p. 2767 - 2776 (2016/09/13)
Thiamine diphosphate (ThDP)-dependent enzymes are well known biocatalysts for the asymmetric synthesis of α-hydroxy ketones with preferential (R)-selectivity. Pharmaceutically relevant phenylacetyl carbinol (PAC) has been prepared with absolute (S)-configuration only on a few occasions using enzyme variants suitably designed through rational site-directed mutagenesis approaches. Herein, we describe the synthesis of (S)-phenylacetyl carbinol products with extended reaction scope employing the readily available wild-type ThDP-dependent enzyme acetoin:dichlorophenolindophenol oxidoreductase (Ao:DCPIP OR) from Bacillus licheniformis. On a semipreparative scale, cross-benzoin-like condensations of methylacetoin (donor) and differently substituted benzaldehydes proceed with almost complete chemoselectivity yielding the target (S)-1-hydroxy-1-phenylpropan-2-one derivatives with high conversion efficiencies (up to 95%) and good enantioselectivities (up to 99%). Ao:DCPIP OR accepts hydroxy- and nitrobenzaldehydes and also sterically demanding substrates such as 1-naphthaldehyde and 4-(tert-butyl)benzaldehyde, which are typically poor acceptors in enzymatic transformations. The explorative synthesis of (S)-phenylpropionyl carbinol mediated by Ao:DCPIP OR via carboligation of benzaldehyde with 3,4-hexanedione is also reported. (Figure presented.).