5391-88-8Relevant articles and documents
Hydrosilylation of Aldehydes and Ketones Catalyzed by a 2-Iminopyrrolyl Alkyl-Manganese(II) Complex
Cruz, Tiago F. C.,Veiros, Luís F.,Gomes, Pedro T.
supporting information, p. 1195 - 1206 (2022/01/11)
A well-defined and very active single-component manganese(II) catalyst system for the hydrosilylation of aldehydes and ketones is presented. First, the reaction of 5-(2,4,6-iPr3C6H2)-2-[N-(2,6-iPr2C6H3)formimino]pyrrolyl potassium (KL) and [MnCl2(Py)2] afforded the binuclear 2-iminopyrrolyl manganese(II) pyridine chloride complex [Mn2{κ2N,N′-5-(2,4,6-iPr3C6H2)-NC4H2-2-C(H)═N(2,6-iPr2C6H3)}2(Py)2(μ-Cl)2] 1. Subsequently, the alkylation reaction of complex 1 with LiCH2SiMe3 afforded the respective (trimethylsilyl)methyl-Mn(II) complex [Mn{κ2N,N′-5-(2,4,6-iPr3C6H2)-NC4H2-2-C(H)═N(2,6-iPr2C6H3)}(Py)CH2SiMe3] 2 in a good yield. Complexes 1 and 2 were characterized by elemental analysis, 1H NMR spectroscopy, Evans' method, FTIR spectroscopy, and single-crystal X-ray diffraction. While the crystal structure of complex 1 has been identified as a binuclear entity, in which the Mn(II) centers present pentacoordinate coordination spheres, that of complex 2 corresponds to a monomer with a distorted tetrahedral coordination geometry. Complex 2 proved to be a very active precatalyst for the atom-economic hydrosilylation of several aldehydes and ketones under very mild conditions, with a maximum turnover frequency of 95 min-1, via a silyl-Mn(II) mechanistic route, as asserted by a combination of experimental and theoretical efforts, the respective silanes were cleanly converted to the respective alcoholic products in high yields.
Exploration of highly electron-rich manganese complexes in enantioselective oxidation catalysis; A focus on enantioselective benzylic oxidation
Klein Gebbink, Robertus J. M.,Li, Fanshi,Lutz, Martin,Masferrer-Rius, Eduard
, p. 7751 - 7763 (2021/12/13)
The direct enantioselective hydroxylation of benzylic C-H bonds to form chiral benzylic alcohols represents a challenging transformation. Herein, we report on the exploration of new biologically inspired manganese and iron complexes bearing highly electron-rich aminopyridine ligands containing 4-pyrrolidinopyridine moieties ((S,S)-1, (R,R)-1, 2 and 5) in combination with chiral bis-pyrrolidine and N,N-cyclohexanediamine backbones in enantioselective oxidation catalysis with aqueous H2O2. The current manganese complexes outperform the analogous manganese complexes containing 4-dimethylaminopyridine moieties (3 and 4) in benzylic oxidation reactions in terms of alcohol yield while keeping similar ee values (~60% ee), which is attributed to the higher basicity of the 4-pyrrolidinopyridine group. A detailed investigation of different carboxylic acid additives in enantioselective benzylic oxidation provides new insights into how to rationally enhance enantioselectivities by means of proper tuning of the environment around the catalytic active site, and has resulted in the selection of Boc-l-Tert-leucine as the preferred additive. Using these optimized conditions, manganese complex 2 was shown to be effective in the enantioselective benzylic oxidation of a series of arylalkane substrates with up to 50% alcohol yield and 62% product ee. A final set of experiments also highlights the use of the new 4-pyrrolidinopyridine-based complexes in the asymmetric epoxidation of olefins (up to 98% epoxide yield and >99% ee).
Chitosan as a chiral ligand and organocatalyst: Preparation conditions-property-catalytic performance relationships
Kolcsár, Vanessza Judit,Sz?ll?si, Gy?rgy
, p. 7652 - 7666 (2021/12/13)
Chitosan is an abundant and renewable chirality source of natural origin. The effect of the preparation conditions by alkaline hydrolysis of chitin on the properties of chitosan was studied. The materials obtained were used as ligands in the ruthenium-catalysed asymmetric transfer hydrogenation of aromatic prochiral ketones and oxidative kinetic resolution of benzylic alcohols as well as organocatalysts in the Michael addition of isobutyraldehyde to N-substituted maleimides. The degrees of deacetylation of the prepared materials were determined by 1H NMR, FT-IR and UV-vis spectroscopy, the molecular weights by viscosity measurements, their crystallinity by WAXRD, and their morphology by SEM and TEM investigations. The materials were also characterized by Raman spectroscopy. The biopolymers which have molecular weights in a narrow (200-230 kDa) range and appropriate (80-95%) degrees of deacetylation were the most efficient ligands in the enantioselective transfer hydrogenation, whereas in the oxidative kinetic resolution the activity of the complexes and the stereoselectivity increased with the degree of deacetylation. The chirality of the chitosan was sufficient to obtain enantioselection in the Michael addition of isobutyraldehyde to maleimides in the aqueous phase. Interestingly, the biopolymer afforded the opposite enantiomer in excess compared to the monomer, d-glucosamine. In this reaction, good correlation between the degree of deacetylation and the catalytic activity was found. These results are novel steps in the application of this natural, biocompatible and biodegradable polymer in developing environmentally benign methods for the production of optically pure fine chemicals.
Chiral Iron(II)-Catalysts within Valinol-Grafted Metal-Organic Frameworks for Enantioselective Reduction of Ketones
Akhtar, Naved,Antil, Neha,Begum, Wahida,Chauhan, Manav,Kumar, Ajay,Manna, Kuntal,Newar, Rajashree
, p. 10450 - 10459 (2021/08/31)
The development of highly efficient and enantioselective heterogeneous catalysts based on earth-abundant elements and inexpensive chiral ligands is essential for environment-friendly and economical production of optically active compounds. We report a strategy of synthesizing chiral amino alcohol-functionalized metal-organic frameworks (MOFs) to afford highly enantioselective single-site base-metal catalysts for asymmetric organic transformations. The chiral MOFs (vol-UiO) were prepared by grafting of chiral amino alcohol such as l-valinol within the pores of aldehyde-functionalized UiO-MOFs via formation of imine linkages. The metalation of vol-UiO with FeCl2 in THF gives amino alcohol coordinated octahedral FeII species of vol-FeCl(THF)3 within the MOFs as determined by X-ray absorption spectroscopy. Upon activation with LiCH2SiMe3, vol-UiO-Fe catalyzed hydrosilylation and hydroboration of a range of aliphatic and aromatic carbonyls to afford the corresponding chiral alcohols with enantiomeric excesses up to 99%. Vol-UiO-Fe catalysts have high turnover numbers of up to 15 ?000 and could be reused at least 10 times without any loss of activity and enantioselectivity. The spectroscopic, kinetic, and computational studies suggest iron-hydride as the catalytic species, which undergoes enantioselective 1,2-insertion of carbonyl to give an iron-alkoxide intermediate. The subsequent σ-bond metathesis between Fe-O bond and Si-H bond of silane produces chiral silyl ether. This work highlights the importance of MOFs as the tunable molecular material for designing chiral solid catalysts based on inexpensive natural feedstocks such as chiral amino acids and base-metals for asymmetric organic transformations.
Amino Acid-Functionalized Metal-Organic Frameworks for Asymmetric Base–Metal Catalysis
Newar, Rajashree,Akhtar, Naved,Antil, Neha,Kumar, Ajay,Shukla, Sakshi,Begum, Wahida,Manna, Kuntal
supporting information, p. 10964 - 10970 (2021/03/29)
We report a strategy to develop heterogeneous single-site enantioselective catalysts based on naturally occurring amino acids and earth-abundant metals for eco-friendly asymmetric catalysis. The grafting of amino acids within the pores of a metal-organic framework (MOF), followed by post-synthetic metalation with iron precursor, affords highly active and enantioselective (>99 % ee for 10 examples) catalysts for hydrosilylation and hydroboration of carbonyl compounds. Impressively, the MOF-Fe catalyst displayed high turnover numbers of up to 10 000 and was recycled and reused more than 15 times without diminishing the enantioselectivity. MOF-Fe displayed much higher activity and enantioselectivity than its homogeneous control catalyst, likely due to the formation of robust single-site catalyst in the MOF through site-isolation.
Iron-Catalyzed Wacker-type Oxidation of Olefins at Room Temperature with 1,3-Diketones or Neocuproine as Ligands**
Kataeva, Olga,Kn?lker, Hans-Joachim,Linke, Philipp,Puls, Florian
supporting information, p. 14083 - 14090 (2021/05/24)
Herein, we describe a convenient and general method for the oxidation of olefins to ketones using either tris(dibenzoylmethanato)iron(III) [Fe(dbm)3] or a combination of iron(II) chloride and neocuproine (2,9-dimethyl-1,10-phenanthroline) as catalysts and phenylsilane (PhSiH3) as additive. All reactions proceed efficiently at room temperature using air as sole oxidant. This transformation has been applied to a variety of substrates, is operationally simple, proceeds under mild reaction conditions, and shows a high functional-group tolerance. The ketones are formed smoothly in up to 97 % yield and with 100 % regioselectivity, while the corresponding alcohols were observed as by-products. Labeling experiments showed that an incorporated hydrogen atom originates from the phenylsilane. The oxygen atom of the ketone as well as of the alcohol derives from the ambient atmosphere.
Synthesis, characterization and catalytic performance in enantioselective reactions by mesoporous silica materials functionalized with chiral thiourea-amine ligand
G?k, Ya?ar,G?k, Halil Zeki
, p. 853 - 874 (2020/11/10)
Chiral heterogeneous catalysts have been synthesized by grafting of silyl derivatives of (1R, 2R)- or (1S, 2S)-1,2-diphenylethane-1,2-diamine on SBA-15 mesoporous support. The mesoporous material SBA-15 and so-prepared chiral heterogeneous catalysts were characterized by a combination of different techniques such as X-ray diffractometry (XRD), Fourier transform infrared (FT-IR), thermogravimetric analysis (TGA), field emission scanning electron microscopy (FESEM), and Brunauer–Emmett–Teller (BET) surface area. Results showed that (1R, 2R)- and (1S, 2S)-1,2-diphenylethane-1,2-diamine were successively immobilized on SBA-15 mesoporous support. Chiral heterogeneous catalysts and their homogenous counterparts were tested in enantioselective transfer hydrogenation of aromatic ketones and enantioselective Michael addition of acetylacetone to β-nitroolefin derivatives. The catalysts demonstrated notably high catalytic conversions (up to 99%) with moderate enantiomeric excess (up to 30% ee) for the heterogeneous enantioselective transfer hydrogenation. The catalytic performances for enantioselective Michael reaction showed excellent activities (up to 99%) with poor enantioselectivities. Particularly, the chiral heterogeneous catalysts could be readily recycled for Michael reaction and reused in three consecutive catalytic experiments with no loss of catalytic efficacies.
Pincerlike molybdenum complex and preparation method thereof, catalytic composition and application thereof, and alcohol preparation method
-
Paragraph 0125-0129, (2021/08/11)
The invention discloses a clamp-type molybdenum complex, a preparation method, a corresponding catalyst composition and application. The method comprises the steps: obtaining 9 molybdenum complexes with different structures through coordination reaction of 2-(substituent ethyl)-(5, 6, 7, 8-tetrahydroquinolyl) amine and a corresponding carbonyl molybdenum metal precursor; and catalyzing a ketone compound transfer hydrogenation reaction through a molybdenum complex to generate 40 alcohol compounds. The preparation method of the molybdenum complex is simple, high in yield and good in stability. For a transfer hydrogenation reaction of ketone, the molybdenum-based catalytic system has high catalytic activity and small molybdenum loading capacity, is used for production of aromatic and aliphatic alcohols, and has the advantages of simple method, small environmental pollution and high yield.
Fe-Catalyzed Anaerobic Mukaiyama-Type Hydration of Alkenes using Nitroarenes
Bhunia, Anup,Bergander, Klaus,Daniliuc, Constantin Gabriel,Studer, Armido
supporting information, p. 8313 - 8320 (2021/03/08)
Hydration of alkenes using first row transition metals (Fe, Co, Mn) under oxygen atmosphere (Mukaiyama-type hydration) is highly practical for alkene functionalization in complex synthesis. Different hydration protocols have been developed, however, control of the stereoselectivity remains a challenge. Herein, highly diastereoselective Fe-catalyzed anaerobic Markovnikov-selective hydration of alkenes using nitroarenes as oxygenation reagents is reported. The nitro moiety is not well explored in radical chemistry and nitroarenes are known to suppress free radical processes. Our findings show the potential of cheap nitroarenes as oxygen donors in radical transformations. Secondary and tertiary alcohols were prepared with excellent Markovnikov-selectivity. The method features large functional group tolerance and is also applicable for late-stage chemical functionalization. The anaerobic protocol outperforms existing hydration methodology in terms of reaction efficiency and selectivity.
Ruthenium-p-cymene Complex Side-Wall Covalently Bonded to Carbon Nanotubes as Efficient Hybrid Transfer Hydrogenation Catalyst
Blanco, Matías,Cembellín, Sara,Agnoli, Stefano,Alemán, José
, p. 5156 - 5165 (2021/11/05)
A half-sandwich ruthenium-p-cymene organometallic complex has been immobilized at Single Walled Carbon Nanotubes (SWNT) sidewalls through a stepwise covalent chemistry protocol. The introduction of amino groups by means of diazonium-chemistry protocols leads the grafting at the outer walls of the nanotubes. This hybrid material is active in the transfer hydrogenation of ketones to yield alcohols, using as hydrogen source 2-propanol. SWNT?NH2?Ru presents a broad scope, performing the reaction under aerobic conditions and can be recycled over 9 consecutive reaction runs without losing activity or leaching ruthenium out. Comparison of the activity with related homogeneous catalysts reveals an improved performance due to the covalent bond between the metal and the material, achieving turnover frequencies as high as 192774 h?1.