99-90-1Relevant articles and documents
One-Dimensional Organic Conjugated Polymers as Recyclable Heterogeneous Photocatalysts
Lei, Zhexuan,Liu, Yiming,Ma, Yuguo,Mo, Yitian,Tong, Yujie
supporting information, (2022/03/18)
Organic conjugated polymers with long-range conjugation generally have strong light absorption capacity in the visible light region and impressive performance in charge transfer, which endows them great application potential in the field of opto-electronic materials. However, there are few reports on their use in photocatalytic reactions. At present, it has been reported that a variety of donor-acceptor (D?A) type organic dyes can be used in efficient organic photocatalytic transformations. We designed and synthesized one-dimensional organic conjugated polymers pPhCzBP-Th and pPhCzBP-DTh with D?A structure, and proved that they are good heterogeneous photo-redox catalysts, which can photocatalyze hydrodehalogenation reduction of α-bromoacetophenone and its derivatives. Due to the strong reducibility of the excited state, pPhCzBP-Th can also efficiently reduce α-chloroacetophenone. Furthermore, by simply wrapping the catalyst powder, high-efficient separation of products and catalysts recycling can be achieved.
Selective Activation of Unstrained C(O)-C Bond in Ketone Suzuki-Miyaura Coupling Reaction Enabled by Hydride-Transfer Strategy
Zhong, Jing,Zhou, Wuxin,Yan, Xufei,Xia, Ying,Xiang, Haifeng,Zhou, Xiangge
, p. 1372 - 1377 (2022/02/23)
A Rh(I)-catalyzed ketone Suzuki-Miyaura coupling reaction of benzylacetone with arylboronic acid is developed. Selective C(O)-C bond activation, which employs aminopyridine as a temporary directing group and ethyl vinyl ketone as a hydride acceptor, occurs on the alkyl chain containing a β-position hydrogen. A series of acetophenone products were obtained in yields up to 75%.
Stepwise benzylic oxygenation via uranyl-photocatalysis
Hu, Deqing,Jiang, Xuefeng
supporting information, p. 124 - 129 (2022/01/19)
Stepwise oxygenation at the benzylic position (1°, 2°, 3°) of aromatic molecules was comprehensively established under ambient conditions via uranyl photocatalysis to produce carboxylic acids, ketones, and alcohols, respectively. The accuracy of the stepwise oxygenation was ensured by the tunability of catalytic activity in uranyl photocatalysis, which was adjusted by solvents and additives demonstrated through Stern–Volmer analysis. Hydrogen atom transfer between the benzylic position and the uranyl catalyst facilitated oxygenation, further confirmed by kinetic studies. Considerably improved efficiency of flow operation demonstrated the potential for industrial synthetic application.
Visible light-mediated, high-efficiency oxidation of benzyl to acetophenone catalyzed by fluorescein
Geng, Haoxing,Liu, Xin,Zhu, Qing
supporting information, (2021/12/20)
An environmentally friendly aerobic oxidation of benzyl C(sp3)-H bonds to ketones via selective oxidation catalysis was developed. Fluorescein is an efficient photocatalyst with excellent chemical selectivity. The reaction has a wide substrate scope, and a successful gram-scale experiment demonstrated its potential industrial utility.
Exploration of highly electron-rich manganese complexes in enantioselective oxidation catalysis; A focus on enantioselective benzylic oxidation
Klein Gebbink, Robertus J. M.,Li, Fanshi,Lutz, Martin,Masferrer-Rius, Eduard
, p. 7751 - 7763 (2021/12/13)
The direct enantioselective hydroxylation of benzylic C-H bonds to form chiral benzylic alcohols represents a challenging transformation. Herein, we report on the exploration of new biologically inspired manganese and iron complexes bearing highly electron-rich aminopyridine ligands containing 4-pyrrolidinopyridine moieties ((S,S)-1, (R,R)-1, 2 and 5) in combination with chiral bis-pyrrolidine and N,N-cyclohexanediamine backbones in enantioselective oxidation catalysis with aqueous H2O2. The current manganese complexes outperform the analogous manganese complexes containing 4-dimethylaminopyridine moieties (3 and 4) in benzylic oxidation reactions in terms of alcohol yield while keeping similar ee values (~60% ee), which is attributed to the higher basicity of the 4-pyrrolidinopyridine group. A detailed investigation of different carboxylic acid additives in enantioselective benzylic oxidation provides new insights into how to rationally enhance enantioselectivities by means of proper tuning of the environment around the catalytic active site, and has resulted in the selection of Boc-l-Tert-leucine as the preferred additive. Using these optimized conditions, manganese complex 2 was shown to be effective in the enantioselective benzylic oxidation of a series of arylalkane substrates with up to 50% alcohol yield and 62% product ee. A final set of experiments also highlights the use of the new 4-pyrrolidinopyridine-based complexes in the asymmetric epoxidation of olefins (up to 98% epoxide yield and >99% ee).
Linkage engineering mediated carriers transfer and surface reaction over carbon nitride for enhanced photocatalytic activity
Chen, Peng,Li, Gen,Liu, Fei,Wang, Qian,Wang, Qiuchen,Yang, Shilian,Yin, Shuang-Feng,Zhao, Tianxiang
, p. 21732 - 21740 (2021/10/14)
Rational tailoring of the atomic structure of photocatalysts with multiple functions to enhance the carrier transfer efficiency and surface activation of carbon nitride (C3N4) is promising and a challenge. Here, we make the first report of a facile strategy to construct amphiphilic carbon and C-O-C chain linked terminal melem units in functional carbon nitride (COCN)viacopolymerizing formaldehyde with melem. By integrating the amphiphilic carrier bridge of carbon and C-O-C chains into the framework, the photogenerated carrier mobility and activated species (superoxide radicals, singlet oxygen) as well as surface interaction are significantly improved. Consequently, the optimal tailoring of C3N4attains superior photocatalytic activity for hydrogen production (34.9 μmol h?1) and selective oxidation of sulfide to sulfoxide using air (nearly 100% conversion and selectivity after 3 h of illumination), which is about 7 times higher than that of pristine C3N4. This study provides deep insight into and strategies for the atomic tailoring of carrier transfer and surface reaction over organic-based photocatalysts.
Iron-catalyzed domino decarboxylation-oxidation of α,β-unsaturated carboxylic acids enabled aldehyde C-H methylation
Gong, Pei-Xue,Xu, Fangning,Cheng, Lu,Gong, Xu,Zhang, Jie,Gu, Wei-Jin,Han, Wei
supporting information, p. 5905 - 5908 (2021/06/18)
A practical and general iron-catalyzed domino decarboxylation-oxidation of α,β-unsaturated carboxylic acids enabling aldehyde C-H methylation for the synthesis of methyl ketones has been developed. This mild, operationally simple method uses ambient air as the sole oxidant and tolerates sensitive functional groups for the late-stage functionalization of complex natural-product-derived and polyfunctionalized molecules.
Cobalt-Catalyzed Aerobic Oxidative Cleavage of Alkyl Aldehydes: Synthesis of Ketones, Esters, Amides, and α-Ketoamides
Li, Tingting,Hammond, Gerald B.,Xu, Bo
supporting information, p. 9737 - 9741 (2021/05/31)
A widely applicable approach was developed to synthesize ketones, esters, amides via the oxidative C?C bond cleavage of readily available alkyl aldehydes. Green and abundant molecular oxygen (O2) was used as the oxidant, and base metals (cobalt and copper) were used as the catalysts. This strategy can be extended to the one-pot synthesis of ketones from primary alcohols and α-ketoamides from aldehydes.
Catalytic Aerobic Oxidation of Alkenes with Ferric Boroperoxo Porphyrin Complex; Reduction of Oxygen by Iron Porphyrin
Kimura, Kento,Kurahashi, Takuya,Matsubara, Seijiro,Murano, Shunpei
supporting information, p. 2493 - 2497 (2021/12/29)
We herein describe the development of a mild and selective catalytic aerobic oxidation process of olefins. This catalytic aerobic oxidation reaction was designed based on experimental and spectroscopic evidence assessing the reduction of atmospheric oxygen using a ferric porphyrin complex and pinacolborane to form a ferric boroperoxo porphyrin complex as an oxidizing species. The ferric boroperoxo porphyrin complex can be utilized as an in-situ generated intermediate in the catalytic aerobic oxidation of alkenes under ambient conditions to form oxidation products that differ from those obtained using previously reported ferric porphyrin catalysis. Moreover, the mild reaction conditions allow chemoselective oxidation to be achieved.
Palladium-Aminopyridine Catalyzed C?H Oxygenation: Probing the Nature of Metal Based Oxidant
Lubov, Dmitry P.,Bryliakova, Anna A.,Samsonenko, Denis G.,Sheven, Dmitriy G.,Talsi, Evgenii P.,Bryliakov, Konstantin P.
, p. 5109 - 5120 (2021/11/10)
A mechanistic study of direct selective oxidation of benzylic C(sp3)?H groups with peracetic acid, catalyzed by palladium complexes with tripodal amino-tris(pyriylmethyl) ligands, is presented. The oxidation of arylalkanes having secondary and tertiary benzylic C?H groups, predominantly yields, depending on the substrate and conditions, either the corresponding ketones or alcohols. One of the three 2-pyriylmethyl moieties, which is pending in the starting catalyst, apparently, facilitates the active species formation and takes part in stabilization of the high-valent Pd center in the active species, occupying the axial coordination site of palladium. The catalytic, as well as isotopic labeling experiments, in combination with ESI-MS data and DFT calculations, point out palladium oxyl species as possible catalytically active sites, operating essentially via C?H abstraction/oxygen rebound pathway. For the ketones formation, O?H abstraction/в-scission mechanism has been proposed.